Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)A
Course Code:CIV 211
Date: 9/1/2023

Academic Year:
2022/2023
Semester: First
Level: $\quad \mathbf{2}^{\text {nd }}$ Civil
Time: 3 Hours
Examiner: Dr. M. Abdel-Kader

Choose the nearest answer.

For the shown beam, it is required to determine the slope at \boldsymbol{A} and the deflections at $\boldsymbol{A}, \boldsymbol{C}$ and \boldsymbol{E} by using the double integration method.
$E I=1.0 \times 10^{5} \mathrm{kN} . \mathrm{m}^{2}$

1. The vertical reaction at the support \boldsymbol{D} is:
(A) $213.3 \mathrm{kN} \mathrm{\uparrow}$
(B) $166.7 k N \uparrow$
(C) $156.7 \mathrm{kN} \uparrow$
(D) $143.3 \mathrm{kN} \uparrow$
2. The bending moment equation (M) in the last part $\boldsymbol{D} \boldsymbol{E}$ is:
(A) $-60-15 x^{2}+500(x-2) / 3-40(x-5)+500(x-8) / 3$
(B) $-60 x^{0}-15 x^{2}+500(x-2) / 3-40(x-5)+640(x-8) / 3$
(C) $-60 x-15 x^{2}+500(x-2) / 3-40(x-5)+640(x-8) / 3$
(D) $-60 x^{0}-15 x^{2}+640(x-2) / 3-40(x-5)+500(x-8) / 3$
3. $E I y=\ldots \ldots$
(A) $-60 x-1.25 x^{4}+250(x-2)^{3} / 9-20(x-5)^{3} / 3+320(x-8)^{3} / 9+C_{1} x+C_{2}$
(B) $-30 x^{2}-1.25 x^{4}+320(x-2)^{3} / 9-20(x-5)^{3} / 3+250(x-8)^{3} / 9+C_{1} x+C_{2}$
(C) $-60-1.25 x^{4}+320(x-2)^{3} / 9-20(x-5)^{3} / 3+250(x-8)^{3} / 9+C_{1} x+C_{2}$
(D) $-30 x^{2}-1.25 x^{4}+250(x-2)^{3} / 9-20(x-5)^{3} / 3+320(x-8)^{3} / 9+C_{1} x+C_{2}$
4. Boundary Conditions are:
(A) At $x=2, y=0$ \& at $x=8, y=0$
(B) At $x=0, y^{\prime}=0$ \& at $x=10, y^{\prime}=0$
(C) At $x=2, y=0$ \& at $x=10, y=0$
5. $C_{1}=\ldots$:
(A) zero
(B) 220
(C) -560
(D) 180
6. $C_{2}=\ldots$:
(A) -220
(B) -180
(C) -1600
(D) 180
7. The slope at $\boldsymbol{A}, \boldsymbol{\theta}_{A}=y_{A}^{\prime}$ is:
(A) $0.0018 \mathrm{rad} \cup$
(B) 0.124 rad O
(C) $0.0325 \mathrm{rad} \cup$
(D) $0.0005 \mathrm{rad} \cup$
8. The deflection at $\boldsymbol{A}, \boldsymbol{y}_{\boldsymbol{A}}$ is:
(A) $10.2 \mathrm{~mm} \downarrow$
(B) $8.8 \mathrm{~mm} \downarrow$
(C) $2.2 \mathrm{~mm} \downarrow$
(D) $6.7 \mathrm{~mm} \downarrow$
9. The deflection at $\boldsymbol{C}, \boldsymbol{y}_{C}$ is:
(A) $20.1 \mathrm{~mm} \downarrow$
(B) $13.7 \mathrm{~mm} \downarrow$
(C) $7.1 \mathrm{~mm} \downarrow$
(D) $1 m m \downarrow$
10. The deflection at $\boldsymbol{E}, \boldsymbol{y}_{\boldsymbol{E}}$ is:
(A) $9.91 \mathrm{~mm} \downarrow$
(B) $13.17 \mathrm{~mm} \downarrow$
(C) $7.11 \mathrm{~mm} \downarrow$
(D) $2.47 \mathrm{~mm} \downarrow$

For the shown beam, it is required to determine the slope at \boldsymbol{A} and the deflections at $\boldsymbol{C} \& \boldsymbol{D}$ by using the moment-area method. $E I=1.0 \times 10^{6} \mathrm{kN} . \mathrm{m}^{2}$
11. The vertical reaction at the hinged support \boldsymbol{B} is:
(A) $260 \mathrm{kN} \uparrow$
(B) $200 \mathrm{kN} \uparrow$
(C) $875 \mathrm{kN} \uparrow$
(D) $1325 \mathrm{kN} \uparrow$
12. The bending moment at \boldsymbol{B} is:
(A) $-360 \mathrm{kN} . \mathrm{m}$
(B) $-960 \mathrm{kN} . \mathrm{m}$
(C) $-2400 \mathrm{kN.m}$
(D) $-540 \mathrm{kN} . \mathrm{m}$

13. The bending moment at \boldsymbol{C} is:
(A) $2160 \mathrm{kN} . \mathrm{m}$
(B) $2400 \mathrm{kN} . \mathrm{m}$
(C) $2625 \mathrm{kN} . \mathrm{m}$
(D) $3090 \mathrm{kN} . \mathrm{m}$
14. The deviation of \boldsymbol{B} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{B} / \boldsymbol{A}}$ is:
(A) 0.064 m
(B) 0.032 m
(C) 0.134 m
(D) 0.092 m
15. The deviation of \boldsymbol{C} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{C} / \boldsymbol{A}}$ is:
(A) 0.065 m
(B) 0.053 m
(C) 0.025 m
(D) 0.092 m
16. The slope of the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{\theta}_{\boldsymbol{A}}$ is:
(A) $0.0112 \mathrm{rad} \cup$
(B) $0.0048 \mathrm{rad} \cup$
(C) $1.2 \mathrm{rad} \cup$
(D) $1.2 \mathrm{rad} \cup$
17. The deviation of \boldsymbol{D} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{D} / \boldsymbol{A}}$ is:
(A) 0.104 m
(B) 0.048 m
(C) 0.196 m
(D) 0.072 m
18. The deflection at $\boldsymbol{C}, \boldsymbol{\delta}_{\boldsymbol{C}}$ is:
(A) $41.9 \mathrm{~mm} \downarrow$
(B) $8.3 \mathrm{~mm} \downarrow$
(C) $24.5 \mathrm{~mm} \downarrow$
(D) $18.3 \mathrm{~mm} \downarrow$
19. The deflection at $\boldsymbol{D}, \delta_{D}$ is:
(A) $18.3 \mathrm{~mm} \uparrow$
(B) $29.0 \mathrm{~mm} \downarrow$
(C) $18.3 \mathrm{~mm} \downarrow$
(D) $29.0 \mathrm{~mm} \uparrow$
20. The nearest elastic curve of the shown beam is:
(A)
(B)
(C)
(D)

For the shown beam, it is required to determine the slopes at $\boldsymbol{A} \& \boldsymbol{D}$, the deflections at $\boldsymbol{B} \& \boldsymbol{D}$ and the maximum deflection for the beam by using the conjugate beam method. $E I=1.0 \times 10^{6} \mathrm{kN} . \mathrm{m}^{2}$.

21. After loading M on the conjugate beam, the elastic reaction at support \boldsymbol{A} is:
(A) $2640 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(B) $1208 \mathrm{kN} \cdot \mathrm{m}^{2} \uparrow$
(C) $604 \mathrm{kN} . \mathrm{m}^{2} \downarrow$
(D) $1320 \mathrm{kN} \cdot \mathrm{m}^{2} \uparrow$
22. After loading M on the conjugate beam, the elastic reaction at support \boldsymbol{D} is:
(A) $1208 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(B) $1320 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
(C) $604 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(D) $2640 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
23. The slope of the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{\theta}_{\boldsymbol{A}}$ is:
(A) $0.006 \mathrm{rad} \cup$
(B) $0.0013 \mathrm{rad} \circlearrowright$
(C) $0.0026 \mathrm{rad} \cup$
(D) $0.0006 \mathrm{rad} \cup$
24. The slope of the tangent of the elastic curve at $\boldsymbol{D}, \boldsymbol{\theta}_{D}$ is:
(A) 0.0013 rad U
(B) 0.006 rad U
(C) $0.0026 \mathrm{rad} \circlearrowright$
(D) $0.0006 \mathrm{rad} \cup$

25 . The deflection at $\boldsymbol{B}, \delta_{B}$ is:
(A) $4.27 \mathrm{~mm} \uparrow$
(B) $17.56 \mathrm{~mm} \uparrow$
(C) $3.78 \mathrm{~mm} \downarrow$
(D) $7.56 \mathrm{~mm} \downarrow$
26. The deflection at $\boldsymbol{D}, \boldsymbol{\delta}_{D}$ is:
(A) $14.27 \mathrm{~mm} \uparrow$
(B) $8.53 \mathrm{~mm} \uparrow$
(C) $5.85 \mathrm{~mm} \downarrow$
(D) $2.93 \mathrm{~mm} \downarrow$
27. The maximum downward deflection is at a distance from support $\boldsymbol{A}=\ldots$:
(A) 4.91 m
(B) 6.00 m
(C) 9.82 m
(D) 2.99 m
28. The maximum downward deflection is:
(A) 4.0 mm
(B) 8.0 mm
(C) 6.5 mm
(D) 12.1 mm
29. The nearest elastic curve of the shown beam is:
(A)
(B)
(C)
(D)

For the shown frame, it is required to determine the horizontal and vertical displacements at \boldsymbol{c} ($\boldsymbol{\delta}_{\boldsymbol{c} \boldsymbol{h}}$ and $\boldsymbol{\delta}_{\boldsymbol{c} v}$) and the slope at $\boldsymbol{c}\left(\boldsymbol{\theta}_{\boldsymbol{c}}\right)$ using the virtual work method. The relative moments of inertia are given between brackets. $E I=1.0 \times 10^{6} \mathrm{kN} . \mathrm{m}^{2}$.
30. The bending moment at \boldsymbol{b} due to the given load is:
(A) $-20 \mathrm{kN} . \mathrm{m}$
(B) $-160 \mathrm{kN} . \mathrm{m}$
(C) $-360 \mathrm{kN} . \mathrm{m}$
(D) $-240 \mathrm{kN} . \mathrm{m}$
31. The bending moment at \boldsymbol{a} due to the given load is:
(A) $-600 \mathrm{kN} . \mathrm{m}$
(B) $-60 \mathrm{kN} . \mathrm{m}$
(C) $-240 \mathrm{kN} . \mathrm{m}$
(D) $-360 \mathrm{kN} . \mathrm{m}$
32. The value of the bending moment at \boldsymbol{b} due to unit vertical load at \boldsymbol{c} is:
(A) $4 \mathrm{kN} . \mathrm{m}$
(B) $1 \mathrm{kN} . \mathrm{m}$
(C) $6 \mathrm{kN} . \mathrm{m}$
(D) $24 \mathrm{kN} . \mathrm{m}$

33. The horizontal displacement at $\boldsymbol{c}, \boldsymbol{\delta}_{c h}$ is:
(A) $8.1 \mathrm{~mm} \rightarrow$
(B) $3.2 \mathrm{~mm} \leftarrow$
(C) $0.1 \mathrm{~mm} \rightarrow$
(D) $2.1 \mathrm{~mm} \rightarrow$
34. The vertical displacement at $\boldsymbol{c}, \boldsymbol{\delta}_{c v}$ is:
(A) $5 \mathrm{~mm} \uparrow$
(B) $9 \mathrm{~mm} \downarrow$
(C) $26 \mathrm{~mm} \downarrow$
(D) $2 m m \downarrow$
35. The slope at $\boldsymbol{c}, \boldsymbol{\theta}_{\boldsymbol{c}}$ is:
(A) 0.0097 rad U
(B) $0.0017 \mathrm{rad} \circlearrowright$
(C) 0.0072 rad U
(D) 0.0172 rad U

For the shown truss, it is required to determine the horizontal and vertical displacement at \boldsymbol{d} ($\boldsymbol{\delta}_{\boldsymbol{d} h}$ and $\delta_{d v}$) using the virtual work method. $E A=1000 \mathrm{kN}$
36. The force in member $\boldsymbol{c} \boldsymbol{d}$ due to the given load $\left(N_{o}\right)$ is:
(A) -1.4 kN
(B) -1 kN
(C) zero
(D) 1 kN
37. The force in member $\boldsymbol{b} \boldsymbol{d}$ due to the given load $\left(N_{o}\right)$ is:
(A) zero
(B) 1 kN
(C) -1 kN
(D) -1.4 kN
38. The value of the force in member $\boldsymbol{b} \boldsymbol{d}$ due to vertical unit load at \boldsymbol{d} is:
(A) zero
(B) 1 kN
(C) 0.5 kN
(D) 1.4 kN
39. The horizontal displacement at $\boldsymbol{d}, \boldsymbol{\delta}_{\boldsymbol{d} h}$ is:

(A) $12.1 \mathrm{~mm} \rightarrow$
(B) $9.3 \mathrm{~mm} \leftarrow$
(C) $3.2 \mathrm{~mm} \leftarrow$
(D) $19.3 \mathrm{~mm} \leftarrow$
40. The vertical displacement at $\boldsymbol{d}, \boldsymbol{\delta}_{\boldsymbol{d} v}$ is:
(A) $4 \mathrm{~mm} \uparrow$
(B) $2 \mathrm{~mm} \uparrow$
(C) zero
(D) $20 \mathrm{~mm} \downarrow$

For the shown frames in $\mathbf{1}$ and $\mathbf{2}$ and beam in $\mathbf{3}$, it is required to draw the influence line (I.L.) for some functions (reaction - shear force - bending moment). 41. The diagram shown in \boldsymbol{A} is the I.L for:
(A) \boldsymbol{A}_{y} of the frame 1.
(B) $\boldsymbol{A}_{\boldsymbol{y}}$ of the frame $\mathbf{2}$.
(C) \boldsymbol{A}_{y} of the beam $\mathbf{3}$.
(D) shear force at \boldsymbol{A} of the frame $\mathbf{2}$.
42. The diagram shown in \boldsymbol{B} is the I.L for:
(A) $\boldsymbol{E}_{\boldsymbol{y}}$ of the frame 1.
(B) $\boldsymbol{E}_{\boldsymbol{y}}$ of the frame 2.
(C) \boldsymbol{B}_{y} of the beam 3 .
(D) \boldsymbol{C}_{y} of the beam 3.
43. The diagram shown in \boldsymbol{C} is the I.L for:
(A) \boldsymbol{A}_{x} of the frame $\mathbf{1}$.
(B) \boldsymbol{A}_{x} of the frame 2.
(C) Bending moment at $\boldsymbol{C}_{\text {right }}$ of the frame 2.
(D) \boldsymbol{B}_{y} of the beam 3.
44. The diagram shown in \boldsymbol{D} is the I.L for:
(A) \boldsymbol{A}_{y} of the frame 1.
(B) Shear force at \boldsymbol{E} of the frame $\mathbf{1}$.
(C) \boldsymbol{A}_{y} of the beam 3 .
(D) Shear force at \boldsymbol{E} of the beam $\mathbf{3}$.
45. The diagram shown in \boldsymbol{E} is the I.L for:
(A) \boldsymbol{A}_{y} of the frame 1.
(B) \boldsymbol{A}_{y} of the frame 2 .
(C) Shear force at \boldsymbol{E} of the frame 2.
(D) \boldsymbol{A}_{y} of the beam 3.
46. The diagram shown in \boldsymbol{F} is the I.L for:
(A) \boldsymbol{A}_{y} of the frame $\mathbf{1}$.
(B) \boldsymbol{A}_{x} of the frame 2.
(C) \boldsymbol{A}_{y} of the frame 2.
(D) \boldsymbol{A}_{x} of the beam 3.
47. The diagram shown in \boldsymbol{G} is the I.L for:
(A) Bending moment at $\boldsymbol{C}_{\text {right }}$ of the frame 2.
(B) Shear force at $\boldsymbol{C}_{\text {right }}$ of the frame 2.
(C) \boldsymbol{C}_{y} of the beam $\mathbf{3}$.
(D) Bending moment at \boldsymbol{D} of the beam $\mathbf{3}$.
48. The diagram shown in \boldsymbol{H} is the I.L for:
(A) \boldsymbol{A}_{y} of the frame 1.
(B) Shear force at \boldsymbol{E} of the beam $\mathbf{3}$.
(C) \boldsymbol{A}_{y} of the beam $\mathbf{3}$.
(D) Bending moment at \boldsymbol{E} of the beam 3.
49. The diagram shown in \boldsymbol{I} is the $I . L$ for:
(A) Bending moment at $\boldsymbol{C}_{\text {right }}$ of the frame 2.
(B) Shear force at $\boldsymbol{C}_{\text {right }}$ of the frame 2.
(C) Bending moment at \boldsymbol{D} of the beam 3 .
(D) \boldsymbol{C}_{y} of the beam 3 .
50. The maximum \boldsymbol{A}_{y} of the frame 2 caused by the shown moving truck is:
(A) 168.6 kN .
(B) 195 kN .
(C) 285.6 kN .
(D) 390.1 kN .

(A)

