amaimana GIZR ENGINEERING INSTITUTE

Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (1)
Course Code: CIV 111
Date: 9/1/2023
Final Exam
Total Marks: 50
Academic Year: 2022/2023
Semester: First
Level: $\quad 1^{\text {st }}$ Civil
Time: 3 Hours
Examiner: Dr. M. Abdel-Kader

Choose the nearest answer.

1. The vertical reaction at the intermediate hinge \boldsymbol{B} is:
(A) 12 kN
(B) 4 kN
(C) 24 kN
(D) 6 kN
2. The horizontal reaction at the intermediate hinge \boldsymbol{B} is:
(A) 12 kN
(B) 4 kN
(C) 24 kN
(D) 6 kN
3. The vertical reaction at the intermediate hinge \boldsymbol{C} is:
(A) 12 kN
(B) 4 kN
(C) zero
(D) 6 kN
4. The horizontal reaction at the intermediate hinge \boldsymbol{C} is:
(A) 12 kN
(B) 4 kN
(C) 24 kN
(D) 6 kN
5. The horizontal reaction at the fixed support \boldsymbol{A} is:
(A) $4 \mathrm{kN} \leftarrow$
(B) $6 \mathrm{kN} \rightarrow$
(C) $10 \mathrm{kN} \leftarrow$
(D) $6 \mathrm{kN} \leftarrow$
6. The vertical reaction at the fixed support \boldsymbol{A} is:
(A) $22 k N \uparrow$
(B) $24 k N \uparrow$
(C) $12 \mathrm{kN} \uparrow$
(D) $10 k N \uparrow$

(1)

7. The moment reaction at the fixed support \boldsymbol{A} is:
(A) $5 \mathrm{kN} . \mathrm{m} \mathrm{U}$
(B) $30 \mathrm{kN.m} \cup$
(C) $25 \mathrm{kN} . \mathrm{m} \cup$
(D) $55 \mathrm{kN} . \mathrm{m} \mathrm{U}$
8. The vertical reaction at the roller support \boldsymbol{E} is:
(A) $68 \mathrm{kN} \uparrow$
(B) $56.5 \mathrm{kN} \uparrow$
(C) $25 k N \uparrow$
(D) $32.5 \mathrm{kN} \uparrow$
(2)

9. The horizontal reaction at the hinged support \boldsymbol{G} is:
(A) $4 \mathrm{kN} \rightarrow$
(B) $6 \mathrm{kN} \leftarrow$
(C) $4 \mathrm{kN} \leftarrow$
(D) $16 \mathrm{kN} \rightarrow$
(A)

(A) $65.5 k N \uparrow$
(B) $23.5 \mathrm{kN} \uparrow$
(C) $55 k N \uparrow$
(D) $47.5 \mathrm{kN} \uparrow$
(B) $\underbrace{+}$
(C)

10. For the shown cantilever beam in (1), the B.M.D is:
(A) A
(B) B
(C) C
(D) None
11. For the shown simple beam in (2), the B.M.D is:
(D) None
(A) A
(B) B
(C) C

$$
-
$$

13. For the shown beam, the vertical reaction at the support \boldsymbol{A} is:
(A) 45 kN
(B) 54 kN
(C) 108 kN
(D) 72 kN
14. For the shown beam, the normal force at \boldsymbol{C} is:
(A) -30 kN
(B) -85 kN
(C) 30 kN
(D) -40 kN
15. The shear force at \boldsymbol{A} is:
(A) zero
(B) 54 kN
(C) 36 kN
(D) 18 kN
16. The shear force just at the right of \boldsymbol{B} is:
(A) 148 kN
(B) 40 kN
(C) 94 kN
(D) 54 kN
17. The shear force just at the right of \boldsymbol{D} is:
(A) $-30 k N$
(B) 30 kN
(C) 60 kN
(D) -15 kN
18. The bending moment at \boldsymbol{G} is:
(A) $81 \mathrm{kN} . \mathrm{m}$
(B) $324 \mathrm{kN} . \mathrm{m}$
(C) $162 \mathrm{kN} . \mathrm{m}$
(D) $108 \mathrm{kN} . \mathrm{m}$
19. The bending moment at \boldsymbol{H} is:
(A) $60 \mathrm{kN} . \mathrm{m}$
(B) $376 \mathrm{kN} . \mathrm{m}$
(C) $40 \mathrm{kN} . \mathrm{m}$
(D) $80 \mathrm{kN} . \mathrm{m}$
20. The maximum positive bending moment in the beam is at a distance of from the support \boldsymbol{A} :
(A) 8 m
(B) 14 m
(C) 3 m
(D) $22 m$
21. The maximum positive bending moment in the beam is:
(A) $162 \mathrm{kN} . \mathrm{m}$
(B) $90 \mathrm{kN} . \mathrm{m}$
(C) $108 \mathrm{kN} . \mathrm{m}$
(D) $324 \mathrm{kN} . \mathrm{m}$
22. For the shown circular arch, the normal force at \boldsymbol{A} is:
(A) 4 kN
(B) -36 kN
(C) -26 kN
(D) 10 kN
23. The shear force at \boldsymbol{A} is:
(A) zero
(B) 36 kN
(C) -5 kN
(D) 10 kN
24. The bending moment at \boldsymbol{A} is:
(A) $-48 \mathrm{kN} . \mathrm{m}$
(B) $-108 \mathrm{kN} . \mathrm{m}$
(C) $-60 \mathrm{kN} . \mathrm{m}$
(D) $-168 \mathrm{kN} . \mathrm{m}$
25. The normal force at \boldsymbol{B} is:
(A) -10 kN
(B) -8 kN
(C) 10 kN
(D) -5 kN
26. The shear force at \boldsymbol{B} is:
(A) -10 kN
(B) 18 kN
(C) -5 kN
(D) 8 kN
27. The bending moment at \boldsymbol{B} is:
(A) $30 \mathrm{kN} . \mathrm{m}$
(B) $-12 \mathrm{kN} . \mathrm{m}$
(C) $-15 \mathrm{kN} . \mathrm{m}$
(D) $15 \mathrm{kN} . \mathrm{m}$
28. For the shown frame, the value of the force in the link member $\boldsymbol{B D}$ is:
(A) 73.6 kN
(B) 54 kN
(C) 104 kN
(D) 79.2 kN
29. The horizontal reaction at the hinged support \boldsymbol{B} is:
(A) $79.2 \mathrm{kN} \leftarrow$
(B) $73.6 \mathrm{kN} \leftarrow$
(C) $25 \mathrm{kN} \rightarrow$
(D) $25 \mathrm{kN} \leftarrow$
30. The vertical reaction at the hinged support \boldsymbol{B} is:
(A) $79.2 \mathrm{kN} \downarrow$
(B) $79.2 k N \uparrow$
(C) $104 \mathrm{kN} \uparrow$
(D) $73.6 \mathrm{kN} \uparrow$
31. The horizontal reaction at the fixed support \boldsymbol{A} is:
(A) $79.2 \mathrm{kN} \rightarrow$
(B) $48.6 \mathrm{kN} \rightarrow$
(C) $25 \mathrm{kN} \rightarrow$
(D) $73.6 \mathrm{kN} \leftarrow$
32. The vertical reaction at the fixed support \boldsymbol{A} is:

(A) $94 k N \uparrow$
(B) $54 \mathrm{kN} \uparrow$
(C) $30.4 \mathrm{kN} \uparrow$
(D) $79.2 k N \uparrow$
33. The moment reaction at the fixed support \boldsymbol{A} is:
(A) $244 \mathrm{kN} . \mathrm{m} \mathrm{U}$
(B) $424 \mathrm{kN.mU}$
(C) $50 \mathrm{kN} . \mathrm{m} \mathrm{U}$
(D) $175 \mathrm{kN} . \mathrm{m} \mathrm{U}$
34. The normal force in the left column at B is:
(A) -540 kN
(B) -140 kN
(C) -180 kN
(D) -130 kN
35. The normal force in the right column above \boldsymbol{G} is:
(A) -490 kN
(B) -80 kN
(C) -410 kN
(D) 80 kN
36. The normal force in the beam at \boldsymbol{D} is:
(A) 180 kN
(B) -140 kN
(C) 40 kN
(D) 130 kN
37. The shear force in the left column at \boldsymbol{A} is:
(A) 180 kN
(B) 130 kN
(C) zero
(D) 140 kN
38. The shear force in the beam at \boldsymbol{D} is:
(A) 130 kN
(B) -80 kN
(C) 40 kN
(D) -40 kN

39. The bending moment in the right column just above \boldsymbol{G} is:
(A) $240 \mathrm{kN} . \mathrm{m}$
(B) $490 \mathrm{kN} . \mathrm{m}$
(C) $180 \mathrm{kN} . \mathrm{m}$
(D) $-80 \mathrm{kN} . \mathrm{m}$
40. The maximum positive bending moment in the left column is:
(A) $280 \mathrm{kN} . \mathrm{m}$
(B) $520 \mathrm{kN} . \mathrm{m}$
(C) $720 \mathrm{kN} . \mathrm{m}$
(D) $440 \mathrm{kN} . \mathrm{m}$
41. The maximum positive bending moment in the beam is:
(A) $581 \mathrm{kN.m}$
(B) $528 \mathrm{kN} . \mathrm{m}$
(C) $440 \mathrm{kN} . \mathrm{m}$
(D) $608 \mathrm{kN} . \mathrm{m}$
42. For the shown truss, the vertical reaction at the hinged support \boldsymbol{E} is:
(A) $10 k N \uparrow$
(B) $18 \mathrm{kN} \uparrow$
(C) $16 k N \uparrow$
(D) $14 k N \uparrow$
43. The force in the member $A B$ is:
(A) zero
(B) 8 kN T
(C) 8 kNC
(D) 16 kNC
44. The force in the member $C D$ is:
(A) zero
(B) 10 kNT
(C) 10 kNC
(D) 26 kNC
45. The force in the member $A F$ is:
(A) zero
(B) 8 kN T
(C) 10 kN T
(D) $4 k N \mathrm{~T}$
46. The force in the member $C E$ is:
(A) 16 kN C
(B) 10 kN T
(C) 14 kN C
(D) 10 kNC
47. The shown structure in Q 47 is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
48. The shown structure in Q 48 is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
49. The shown structure in Q 49 is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
50. The shown structure in Q 50 is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree

