Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)B
Course Code : CIV 221
Date: 7/6/2022

Academic Year:
2021/2022
Semester:
Level: $\quad \mathbf{2}^{\text {st }} \mathbf{C i v i l}$
Time: 3 Hours
Examiner: Dr. M. Abdel-Kader

Final Exam

Total Marks: 70
No. of Questions:40 (Attempt all questions)
For the shown beam, use the threemoment equation to draw the shear force and the bending moment diagrams.

Choose the nearest answer.

1. The shown beam has \ldots unknown moments at supports.
(A) 1
(B) 2
(C) 3
(D) 4
2. In M_{o}-diagram due to the given loads, the maximum moment in the span $a b$ is:
(A) $20 \mathrm{kN} . \mathrm{m}$
(B) $80 \mathrm{kN} . \mathrm{m}$
(C) $40 \mathrm{kN} . \mathrm{m}$
(D) $90 \mathrm{kN} . \mathrm{m}$
3. In M_{o}-diagram due to the given loads, the maximum moment in the span $b c$ is:
(A) $15 \mathrm{kN} . \mathrm{m}$
(B) $30 \mathrm{kN} . \mathrm{m}$
(C) $40 \mathrm{kN} . \mathrm{m}$
(D) $60 \mathrm{kN} . \mathrm{m}$
4. The elastic reaction at the support b from span $b a\left(r_{b a}\right)$ is:
(A) zero
(B) 13.33
(C) 20
(D) 40
5. The elastic reaction at the support b from span $b c\left(r_{b c}\right)$ is:
(A) 30
(B) 60
(C) 80
(D) 120
6. The elastic reactions at the support $c\left(r_{c b} \& r_{c d}\right)$ are:
(A) $80 \& 50$
(B) $60 \& 50$
(C) $120 \& 90$
(D) $80 \& 45$
7. The final moment at the support b is:
(A) $-22.7 \mathrm{kN} . \mathrm{m}$
(B) $-25.4 \mathrm{kN} . \mathrm{m}$
(C) $-30.3 \mathrm{kN} . \mathrm{m}$
(D) $-49.2 \mathrm{kN} . \mathrm{m}$
8. The final moment at the support c is:
(A) $-25.4 \mathrm{kN} . \mathrm{m}$
(B) $-49.2 \mathrm{kN} . \mathrm{m}$
(C) $-55.2 \mathrm{kN} . \mathrm{m}$
(D) $-42.1 \mathrm{kN} . \mathrm{m}$
9. The final maximum positive moment in the span $a b$ is:
(A) $47.3 \mathrm{kN} . \mathrm{m}$
(B) $72.2 \mathrm{kN} . \mathrm{m}$
(C) $28.7 \mathrm{kN} . \mathrm{m}$
(D) $51.4 \mathrm{kN} . \mathrm{m}$
10. The final shear force at a is:
(A) zero
(B) 12.2 kN
(C) -25.7 kN
(D) -36.4 kN
11. The final shear force at d is:
(A) -76.2 kN
(B) -12.2 kN
(C) -25.7 kN
(D) -13.6 kN

For the shown frame, use the consistent deformations (virtual work) method to draw the bending moment diagram. Take the main system by replacing the fixed support at C by hinged support. $E I$ is constant.

Choose the nearest answer.

12. The moment at a in M_{o}-diagram due to the given loads is:
(A) $-900 \mathrm{kN} . \mathrm{m}$
(B) zero
(C) $-360 \mathrm{kN} . \mathrm{m}$
(D) $-450 \mathrm{kN} . \mathrm{m}$
13. The moment at c in M_{o}-diagram due to the given loads is:
(A) $20 \mathrm{kN} . \mathrm{m}$
(B) $120 \mathrm{kN} . \mathrm{m}$
(C) zero
(D) $60 \mathrm{kN} . \mathrm{m}$
14. The value of the moment at a in M_{1}-diagram due to the moment redundant $X_{1}=1 \mathrm{kN} . \mathrm{m}$ at c is:
(A) zero
(B) $1 \mathrm{kN} . \mathrm{m}$
(C) $3 \mathrm{kN} . \mathrm{m}$
(D) $6 \mathrm{kN} . \mathrm{m}$
15. The value of the moment at c in M_{1}-diagram due to the moment redundant $X_{1}=1 \mathrm{kN} . \mathrm{m}$ at c is:
(A) zero
(B) $1 \mathrm{kN} . \mathrm{m}$
(C) $3 \mathrm{kN} . \mathrm{m}$
(D) $6 \mathrm{kN} . \mathrm{m}$
16. The value of the deflection δ_{10} is:
(A) $900 / E I$
(B) $2250 / E I$
(C) $200 / E I$
(D) $400 / 3 E I$
17. The value of the deflection δ_{11} is:
(A) $16 / E I$
(B) $2 / E I$
(C) $8 / E I$
(D) $4 / E I$
18. The value of the final moment reaction at the fixed support $c\left(X_{1}=M_{c}\right)$ is:
(A) $225 \mathrm{kN} . \mathrm{m}$
(B) $562.5 \mathrm{kN} . \mathrm{m}$
(C) $107.5 \mathrm{kN} . \mathrm{m}$
(D) $82.3 \mathrm{kN} . \mathrm{m}$
19. The value of the final moment at a is:
(A) $270 \mathrm{kN} . \mathrm{m}$
(B) $180 \mathrm{kN} . \mathrm{m}$
(C) $337.5 \mathrm{kN} . \mathrm{m}$
(D) $135 \mathrm{kN} . \mathrm{m}$
20. The value of the final moment at b is:
(A) $1 \mathrm{kN} . \mathrm{m}$
(B) $4 \mathrm{kN} . \mathrm{m}$
(C) $135 \mathrm{kN} . \mathrm{m}$
(D) zero

Please turn over

For the shown truss, use the consistent deformations (virtual work) method to determine the forces in the members. Take the main system by removing
the member $\boldsymbol{B C}$. Assume $E A$ is constant for all members.
Choose the nearest answer.
21. The vertical reaction at the hinged support A due to the given loads $\left(N_{\mathrm{o}}\right)$ is:
(A) zero
(B) $5 \mathrm{kN} \uparrow$
(C) $20 \mathrm{~N} \uparrow$
(D) $10 \mathrm{kN} \uparrow$
22. The force in member $A C$ due to the given loads $\left(N_{\mathrm{o}}\right)$ is:
(A) 10 kN C
(B) zero
(C) 5 kN C
(D) 10 kN T
23. The value of the force in member $A C$ due to force $X_{l}=1 \mathrm{kN}$ in member $C B$ is:
(A) zero
(B) 1 kN
(C) 0.71 kN
(D) 1.41 kN
24. The value of the deflection δ_{10} is:
(A) $28.3 / \mathrm{EA}$
(B) $83.2 / E A$
(C) $0.54 / E A$
(D) $13.2 / E A$
25. The final force in member $A C$ is:
(A) 8.96 C
(B) 7.28 kN C
(C) 6.71 kN C
(D) 7.91 kN T
26. The final force in member $A B$ is:
(A) 1 C
(B) 1 T
(C) zero
(D) 0.71 kN C

For the shown frame, use the slope deflection method to draw the bending moment diagram. Note that E is constant and the relative moments of inertia are given between brackets. Neglect axial deformation.

Choose the nearest answer.

27. The value of the fixed end moments of span $A D$ is:
(A) $12 \mathrm{~m} . \mathrm{t}$
(B) $9 \mathrm{~m} . \mathrm{t}$
(C) $36 \mathrm{~m} . \mathrm{t}$
(D) $144 \mathrm{~m} . \mathrm{t}$
28. The value of the fixed end moment of span $D C$ at D is:
(A) $12 \mathrm{~m} . \mathrm{t}$
(B) $9 \mathrm{~m} . \mathrm{t}$
(C) $144 \mathrm{~m} . \mathrm{t}$
(D) $36 \mathrm{~m} . \mathrm{t}$

29. The value of the fixed end moment of column $D B$ at D is:
(A) zero
(B) $6 \mathrm{~m} . \mathrm{t}$
(C) $12 \mathrm{~m} . \mathrm{t}$
(D) $16 \mathrm{~m} . \mathrm{t}$
30. The value of the unknown displacement θ_{D} is.
(A) $48 / E I$
(B) $3 / E I$
(C) $300 / E I$
(D) $183 / E I$
31. The value of the final moment at A is:
(A) $12 \mathrm{~m} . \mathrm{t}$
(B) $3 \mathrm{~m} . \mathrm{t}$
(C) $168 \mathrm{~m} . \mathrm{t}$
(D) $48 \mathrm{~m} . \mathrm{t}$
32. The final maximum negative moment in the span $D C$ is:
(A) $-6 \mathrm{~m} . \mathrm{t}$
(B) $-12 \mathrm{~m} . \mathrm{t}$
(C) $-72 \mathrm{~m} . \mathrm{t}$
(D) $-27 \mathrm{~m} . \mathrm{t}$
33. The value of the final maximum moment in the column $B D$ is:
(A) zero
(B) $9 \mathrm{~m} . \mathrm{t}$
(C) $24 \mathrm{~m} . \mathrm{t}$
(D) $90 \mathrm{~m} . \mathrm{t}$

For the shown frame, use the moment distribution method to draw the bending moment diagram. $E I$ is constant.

Choose the nearest answer.

34. The value of the fixed end moment of span $a b$ at b is:
(A) $150 \mathrm{kN} . \mathrm{m}$
(B) $60 \mathrm{kN} . \mathrm{m}$
(C) $75 \mathrm{kN} . \mathrm{m}$
(D) $500 \mathrm{kN} . \mathrm{m}$
35. The value of the fixed end moment of column $b c$ at b is:

36. The distribution factors of the excess bending moment at joint b are:
(A) $4 / 7 \& 3 / 7$
(B) $1 / 3 \& 2 / 3$
(C) $10 / 3 \& 5 / 3$
(D) $1 / 2 \& 1 / 2$
37. The final bending moment at a is:
(A) $-81.25 \mathrm{kN} . \mathrm{m}$
(B) $-62.25 \mathrm{kN} . \mathrm{m}$
(C) $-25.25 \mathrm{kN} . \mathrm{m}$
(D) $-75.25 \mathrm{kN} . \mathrm{m}$
38. The final bending moment at b is:
(A) $-32.5 \mathrm{kN} . \mathrm{m}$
(B) $-12.8 \mathrm{kN} . \mathrm{m}$
(C) $-37.5 \mathrm{kN} . \mathrm{m}$
(D) $-62.5 \mathrm{kN} . \mathrm{m}$
39. The final bending moment at c is:
(A) $-51.2 \mathrm{kN} . \mathrm{m}$
(B) $-25 \mathrm{kN} . \mathrm{m}$
(C) $-96 \mathrm{kN} . \mathrm{m}$
(D) $20 \mathrm{kN} . \mathrm{m}$
40. The final bending moment at the middle of column $b c$ is:
(A) $25 \mathrm{kN} . \mathrm{m}$
(B) $12.5 \mathrm{kN} . \mathrm{m}$
(C) $37.5 \mathrm{kN} . \mathrm{m}$
(D) $-62.5 \mathrm{kN} . \mathrm{m}$
