Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (1)B
Course Code: CIV 121
Date: 5/6/2022

Academic Year:
Semester:
Level:
Time: $\quad 3$ Hours
Examiner: Dr. M. Abdel-Kader

Final Exam

Total Marks: 90
No. of Questions:45 (Attempt all questions)

Choose the nearest answer.

1. The shown cross-section is:
(A) Symmetrical about
(B) Symmetrical about
(C) Not symmetrical vertical axis. horizontal axis.
2. The areas 1,2 and 3 are:
(A) $1.44 \mathrm{~m}^{2}$
(B) $1.22 \mathrm{~m}^{2}$
(C) $1.44 \mathrm{~m}^{2}$
(D) $2.40 \mathrm{~m}^{2}$ $2.07 \mathrm{~m}^{2}$ $3.70 \mathrm{~m}^{2}$ $2.70 \mathrm{~m}^{2}$ $1.08 \mathrm{~m}^{2}$ $1.10 \mathrm{~m}^{2}$ $1.80 \mathrm{~m}^{2}$ $3.00 \mathrm{~m}^{2}$ $0.60 \mathrm{~m}^{2}$
3. The total area of the cross-section is:
(A) $4.59 \mathrm{~m}^{2}$
(B) $5.02 \mathrm{~m}^{2}$
(C) $6.20 \mathrm{~m}^{2}$
(D) $5.94 \mathrm{~m}^{2}$
4. The first moment of the total area about the y_{L}-axis is:
(A) $31.12 \mathrm{~m}^{3}$
(B) $14.22 \mathrm{~m}^{3}$
(C) $7.49 \mathrm{~m}^{3}$
(D) $12.31 \mathrm{~m}^{3}$
5. The first moment of the total area about the x_{B}-axis is:
(A) $12.12 \mathrm{~m}^{3}$
(B) $9.47 \mathrm{~m}^{3}$
(C) $7.49 \mathrm{~m}^{3}$
(D) $12.31 \mathrm{~m}^{3}$
6. The centroidal Y_{C}-axis of the cross-section is at $\bar{x}=\ldots$ from y_{L}-axis.
(A) 1.35 m
(B) 2.07 m
(C) 2.4 m
(D) 3.35 m
7. The centroidal X_{C}-axis of the cross-section is at $\bar{y}=\ldots$ from x_{B}-axis.

(A) 1.26 m
(B) 1.70 m
(C) 1.02 m
(D) 1.59 m
8. The second moment of the cross-section about its centroidal X_{C}-axis is:
(A) $3.53 \mathrm{~m}^{4}$
(B) $4.21 \mathrm{~m}^{4}$
(C) $4.21 \mathrm{~m}^{3}$
(D) $5.13 \mathrm{~m}^{4}$
9. The second moment of the cross-section about its centroidal Y_{C}-axis is:
(A) $3.11 \mathrm{~m}^{4}$
(B) $5.01 \mathrm{~m}^{4}$
(C) $1.21 \mathrm{~m}^{4}$
(D) $2.13 \mathrm{~m}^{4}$
10. The product (mixed) moment of the cross-section about its centroidal X_{C} and Y_{C}-axes is:
(A) $7.21 \mathrm{~m}^{4}$
(B) $1.44 \mathrm{~m}^{4}$
(C) $-5.21 \mathrm{~m}^{4}$
(D) $4.10 \mathrm{~m}^{4}$
11. The principal axes (u and v) of the cross-section makes an angle θ with the horizontal axis $=\ldots$:
(A) -45.0°
(B) zero
(C) -27.5°
(D) 26.6°
12. The principal moments of inertia of the cross-section I_{u} and I_{v} are:
(A) $8.58 \mathrm{~m}^{4}$ and $1.36 \mathrm{~m}^{4}$
(B) $5.88 \mathrm{~m}^{4}$ and $2.36 \mathrm{~m}^{4}$
(C) $6.44 \mathrm{~m}^{4}$ and $3.00 \mathrm{~m}^{4}$
(D) $5.21 \mathrm{~m}^{4}$ and $1.99 \mathrm{~m}^{4}$
13. The polar moment of inertia of the cross-section I_{P} is:
(A) $9.94 \mathrm{~m}^{4}$
(B) $8.24 \mathrm{~m}^{4}$
(C) $9.44 \mathrm{~m}^{4}$
(D) $7.20 \mathrm{~m}^{4}$
14. The radius of gyration of the cross-section about its centroidal X_{C}-axis is:
(A) 0.39 m
(B) 0.71 m
(C) 0.83 m
(D) 0.93 m

A bar of variable cross-section is subjected to axial forces as shown. $E=2.0 \mathrm{GPa}$

$$
\text { Allowable stress for bronze }=100 \mathrm{MPa}
$$

Allowable stress for aluminum $=90 \mathrm{MPa}$

Choose the nearest answer.

15 . The bar is subjected to:
(A) Shear stress
(B) Moment
(C) Normal stress
(D) Twisting moment
16. The normal force in the bronze part is:
(A) P
(B) F
(C) $2 \boldsymbol{F}$
(D) $2 \boldsymbol{F}+\boldsymbol{P}$
17. The normal force in the aluminum part is:
(A) P
(B) F
(C) $2 \boldsymbol{F}$
(D) $2 \boldsymbol{F}+\boldsymbol{P}$
18. The cross-section of the bronze part has area of:
(A) $100 \mathrm{~mm}^{2}$
(B) $300 \mathrm{~mm}^{2}$
(C) $200 \mathrm{~mm}^{2}$
(D) $50 \mathrm{~mm}^{2}$

19. The maximum safe value of \boldsymbol{P} is:
(A) 20 kN
(B) 10 kN
(C) 100 kN
(D) 5 kN
20. The axial deformation of the bronze part only due to the maximum safe value of \boldsymbol{P} is:
(A) 6 mm
(B) 10 mm
(C) 3 mm
(D) 1 mm
21. The critical cross-section of the aluminum part has area of:
(A) $200 \mathrm{~mm}^{2}$
(B) $30 \mathrm{~mm}^{2}$
(C) $650 \mathrm{~mm}^{2}$
(D) $170 \mathrm{~mm}^{2}$
22. The maximum safe value of \boldsymbol{F} is:
(A) 1100 N
(B) 2650 N
(C) 7650 N
(D) 5300 N

Please turn over

For the shown beam with the shown cross-section

Choose the nearest answer.

(A) $12 \mathrm{kN} . \mathrm{m}$
(B) $21 \mathrm{kN} . \mathrm{m}$
(C) $27 \mathrm{kN} . \mathrm{m}$
(D) $32 \mathrm{kN} . \mathrm{m}$
25. The second moment of the cross-section about x-axis is:
(A) $19718 \mathrm{~cm}^{4}$
(B) $20736 \mathrm{~cm}^{4}$
(C) $11663 \mathrm{~cm}^{4}$
(D) $1018 \mathrm{~cm}^{4}$

Cross-section of the beam
26. The maximum tensile normal stress is at $y=$
(A) -6 cm
(B) 24 cm
(C) 12 cm
(D) -12 cm
27. The maximum compressive normal stress is at $y=$
(A) -6 cm
(B) 24 cm
(C) 12 cm
(D) -12 cm
28. The normal stress due to bending moment is:
(A) $\sigma=\frac{N}{A}$
(B) $\sigma=\frac{M}{I} y$
(C) $\sigma=\frac{N}{I} y$
(D) $\sigma=\frac{M}{y} I$
29. The maximum tensile normal stress at cross-section \boldsymbol{B} is:
(A) $12.8 \mathrm{kN} / \mathrm{cm}^{2}$
(B) 6.39 MPa
(C) $9442 \mathrm{~N} / \mathrm{cm}^{2}$
(D) 12.78 MPa
30. The maximum compressive normal stress at cross-section \boldsymbol{B} is:
(A) $-12.8 \mathrm{kN} / \mathrm{cm}^{2}$
(B) -6.39 MPa
(C) $-9442 \mathrm{~N} / \mathrm{cm}^{2}$
(D) -12.78 MPa
31. The shear force at the cross-section just to the right of support \boldsymbol{A} is:
(A) 20 kN
(B) -12 kN
(C) 32 kN
(D) -6 kN
32. The maximum shear stress due to bending at the cross-section just to the right of support \boldsymbol{A} is:
(A) 1.17 MPa
(B) 1.95 MPa
(C) 3.12 MPa
(D) 0.59 MPa

For the shown loaded column of base section of $0.4 \mathrm{~m} \times 0.6 \mathrm{~m}$. Neglect the column weight.

Choose the nearest answer.

33. The normal force at the base section is:
(A) -5000 kN
(B) -1000 kN
(C) -6000 kN
(D) -6100 kN
34. The bending moment about the x-axis of the base section is:
(A) $1830 \mathrm{kN} . \mathrm{m}$
(B) $300 \mathrm{kN} . \mathrm{m}$
(C) $1500 \mathrm{kN} . \mathrm{m}$
(D) $1800 \mathrm{kN} . \mathrm{m}$
35. The bending moment about the y-axis of the base section is:
(A) $120 \mathrm{kN} . \mathrm{m}$
(B) $-200 \mathrm{kN} . \mathrm{m}$
(C) $1000 \mathrm{kN} . \mathrm{m}$
(D) $320 \mathrm{kN} . \mathrm{m}$
36. The area of the base section is:
(A) $1.28 \mathrm{~m}^{2}$
(B) $0.24 \mathrm{~m}^{2}$
(C) $0.84 \mathrm{~m}^{2}$
(D) $2.4 \mathrm{~m}^{2}$

(A) $0.0072 \mathrm{~m}^{4}$
(B) $0.0032 \mathrm{~m}^{4}$
(C) $0.0024 \mathrm{~m}^{4}$
(D) $0.32 \mathrm{~m}^{4}$
37. The second moment of area about y-axis I_{y} of the base section is:
(A) $0.32 \mathrm{~m}^{4}$
(B) $0.0032 \mathrm{~m}^{4}$
(C) $0.0024 \mathrm{~m}^{4}$
(D) $0.0042 \mathrm{~m}^{4}$
38. The normal stress at the centroid of the base section is:
(A) -20.8 MPa
(B) -4.2 MPa
(C) -25 MPa
(D) -20833 kPa
0.4 m
39. The maximum tensile normal stress at the base section is:
(A) 27.5 MPa
(B) 45.7 MPa
(C) 75.5 MPa
(D) 57.5 MPa
40. The maximum compressive normal stress at the base section is:
(A) -80.9 MPa
(B) -27.5 MPa
(C) -107.5 MPa
(D) -57.5 MPa
41. The value of the shear force at the base section is:
(A) 5000 kN
(B) 1000 kN
(C) 100 kN
(D) zero
42. The value of the twisting moment about the z-axis of the base section is:
(A) $30 \mathrm{kN} . \mathrm{m}$
(B) $200 \mathrm{kN} . \mathrm{m}$
(C) $400 \mathrm{kN} . \mathrm{m}$
(D) $60 \mathrm{kN} . \mathrm{m}$
43. For the shown cantilevered beam of variable circular cross-section, the value of the twisting moment at \boldsymbol{A} is:
(A) $250 \mathrm{kN} . \mathrm{m}$
(B) $150 \mathrm{kN} . \mathrm{m}$
(C) $200 \mathrm{kN} . \mathrm{m}$
(D) $50 \mathrm{kN} . \mathrm{m}$
44. The maximum shear stress in part $\boldsymbol{A B}$ due to twisting moment is:
(A) 378 MPa
(B) 226 MPa
(C) 453 MPa
(D) 755 MPa

