Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)A
Course Code: CIV 211
Date: 15/1/2022

Academic Year:
Semester:
Level:
Time:
Examiner: Dr. M. Abdel-Kader

Choose the nearest answer.

For the shown beam, it is required to determine the deflections at \boldsymbol{B} and \boldsymbol{C} and the slope at \boldsymbol{A} by using the double integration method.
$E I=1.0 \times 10^{6} \mathrm{kN} . \mathrm{m}^{2}$

1. The vertical reaction at the hinged support \boldsymbol{A} is:
(A) $600 \mathrm{kN} \uparrow$
(B) $1200 \mathrm{kN} \uparrow$
(C) $120 \mathrm{kN} \uparrow$
(D) $720 \mathrm{kN} \uparrow$
2. The bending moment equation (M) in the last part $\boldsymbol{D} \boldsymbol{E}$ is:
(A) $600 x-40 x^{2}-120(x-15)$
(B) $720 x-40 x^{2}-120(x-5)-120(x-10)$
(C) $120 x-40 x^{2}-120(x-5)-120(x-10)$
3. $E I y^{\prime}=\ldots \ldots$.
(A) $300 x^{2}-40 x^{3} / 3-60(x-15)^{2}+C_{1}$
(B) $60 x^{2}-40 x^{3} 33-60(x-10)^{2}+C_{1}$
(C) $360 x^{2}-40 x^{3} / 3-60(x-5)^{2}-60(x-10)^{2}+C_{1}$
4. $E I y=$
(A) $100 x^{3}-10 x^{4} / 3-20(x-15)^{3}+C_{1} x+C_{2}$
(B) $20 x^{3}-10 x^{4} / 3-20(x-10)^{3}+C_{1} x+C_{2}$
(C) $120 x^{3}-10 x^{4} / 3-20(x-5)^{3}-20(x-10)^{3}+C_{1} x+C_{2}$
5. Boundary Conditions are:
(A) At $x=0, y=0$ \& at $x=15, y=0$
(B) At $x=0, y^{\prime}=0$ \& at $x=15, y^{\prime}=0$
(C) At $x=5, y=0$ \& at $x=10, y=0$
6. C_{2} is:
(A) 160
(B) 50
(C) -560
(D) zero
7. C_{1} is:
(A) -14250
(B) -2450
(C) -1600
(D) zero
8. The deflection at $\boldsymbol{B}, \boldsymbol{y}_{\boldsymbol{B}}$ is:
(A) $101.2 \mathrm{~mm} \downarrow$
(B) $8.8 \mathrm{~mm} \downarrow$
(C) $58.3 \mathrm{~mm} \downarrow$
(D) $91.7 \mathrm{~mm} \downarrow$
9. The deflection at \boldsymbol{C} (at $x=7.5 \mathrm{~m}), \boldsymbol{y}_{\boldsymbol{C}}$ is:
(A) $120.1 \mathrm{~mm} \downarrow$
(B) $13.7 \mathrm{~mm} \downarrow$
(C) $97.11 \mathrm{~mm} \downarrow$
(D) $67.1 \mathrm{~mm} \downarrow$
10. The slope at $\boldsymbol{A}, \boldsymbol{\theta}_{A}=y_{A}^{\prime}$ is:
(A) $0.0143 \mathrm{rad} \circlearrowright$
(B) 0.124 rad C
(C) $0.0325 \mathrm{rad} \circlearrowright$
(D) 0.0005 rad C

For the shown beam, it is required to determine the slope at \boldsymbol{A} and the deflections at $\boldsymbol{B} \& \boldsymbol{D}$ by using the moment-area method. $E I=1.0 \times 10^{6} \mathrm{kN} . \mathrm{m}^{2}$
11. The vertical reaction at the hinged support \boldsymbol{A} is:
(A) $100 k N \uparrow$
(B) $100 \mathrm{kN} \downarrow$
(C) $437.5 \mathrm{kN} \uparrow$
(D) $560 \mathrm{kN} \uparrow$
12. The bending moment at \boldsymbol{C} is:
(A) $-60 \mathrm{kN} . \mathrm{m}$
(B) $-270 \mathrm{kN} . \mathrm{m}$
(C) -180 kN.m
(D) -90 kN.m
13. The bending moment at \boldsymbol{B} is:

$\begin{array}{ll}\text { (C) } 2625 \mathrm{kN} . \mathrm{m} & \text { (D) } 1545 \mathrm{kN} . \mathrm{m}\end{array}$
(A) $1080 \mathrm{kN} . \mathrm{m}$ (B) $1200 \mathrm{kN.m}$
14. The deviation of \boldsymbol{B} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{B} / \boldsymbol{A}}$ is:
(A) 0.0325 m
(B) 0.0265 m
(C) 0.0125 m
(D) 0.0465 m
15. The deviation of \boldsymbol{C} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{C / A}$ is:
(A) 0.032 m
(B) 0.016 m
(C) 0.067 m
(D) 0.046 m
16. The slope of the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{\theta}_{\boldsymbol{A}}$ is:
(A) $0.0056 \mathrm{rad} \cup$
(B) $0.0024 \mathrm{rad} \circlearrowright$
(C) $0.6 \mathrm{rad} \cup$
(D) $0.6 \mathrm{rad} \cup$
17. The deviation of \boldsymbol{D} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{D} / \boldsymbol{A}}$ is:
(A) 0.012 m
(B) 0.024 m
(C) 0.098 m
(D) 0.036 m
18. The deflection at $\boldsymbol{B}, \boldsymbol{\delta}_{\boldsymbol{B}}$ is:
(A) $4.27 \mathrm{~mm} \uparrow$
(B) $20.97 \mathrm{~mm} \downarrow$
(C) $12.25 \mathrm{~mm} \downarrow$
(D) $4.27 \mathrm{~mm} \downarrow$
19. The deflection at $\boldsymbol{D}, \boldsymbol{\delta}_{D}$ is:
(A) $40.1 \mathrm{~mm} \uparrow$
(B) $10.5 \mathrm{~mm} \downarrow$
(C) $23.1 \mathrm{~mm} \downarrow$
(D) $14.5 \mathrm{~mm} \uparrow$
20. The nearest elastic curve of the shown beam is:
(A)
(B)
(C)
(D)

For the shown beam, it is required to determine the slopes at $\boldsymbol{A} \& \boldsymbol{D}$, the deflections at $\boldsymbol{B} \& \boldsymbol{D}$ and the maximum deflection for the beam by using the conjugate beam method. $E I=1.0 \times 10^{6} \mathrm{kN} \cdot \mathrm{m}^{2}$.
21. After loading M on the conjugate beam, the elastic reaction at support \boldsymbol{A} is:
(A) $302 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(B) $604 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(C) $302 \mathrm{kN} . \mathrm{m}^{2} \downarrow$
(D) $1320 \mathrm{kN} \cdot \mathrm{m}^{2} \uparrow$
22. After loading M on the conjugate beam, the elastic reaction at support \boldsymbol{D} is:
(A) $604 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(B) $1320 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
(C) $302 \mathrm{kN} . \mathrm{m}^{2} \uparrow$
(D) $302 \mathrm{kN} . \mathrm{m}^{2} \downarrow$
23. The slope of the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{\theta}_{\boldsymbol{A}}$ is:
(A) $0.006 \mathrm{rad} \cup$
(B) $0.0013 \mathrm{rad} \circlearrowright$
(C) $0.0003 \mathrm{rad} \cup$
(D) $0.0003 \mathrm{rad} \cup$
24. The slope of the tangent of the elastic curve at $\boldsymbol{D}, \boldsymbol{\theta}_{D}$ is:
(A) $0.0013 \mathrm{rad} \cup$
(B) $0.006 \mathrm{rad} \cup$
(C) $0.0003 \mathrm{rad} \circlearrowright$
(D) $0.0003 \mathrm{rad} \cup$
25. The deflection at $\boldsymbol{B}, \boldsymbol{\delta}_{\boldsymbol{B}}$ is:
(A) $4.27 \mathrm{~mm} \uparrow$
(B) $8.53 \mathrm{~mm} \uparrow$
(C) $3.78 \mathrm{~mm} \downarrow$
(D) $8.78 \mathrm{~mm} \downarrow$
26. The deflection at $\boldsymbol{D}, \delta_{D}$ is:
(A) $4.27 \mathrm{~mm} \uparrow$
(B) $8.53 \mathrm{~mm} \uparrow$
(C) $8.78 \mathrm{~mm} \downarrow$
(D) $2.93 \mathrm{~mm} \downarrow$
27. The maximum downward deflection is at a distance from support $\boldsymbol{A}=\ldots$:
(A) 3.83 m
(B) 5.00 m
(C) 4.91 m
(D) 2.99 m
28. The maximum downward deflection is:
(A) 4.0 mm
(B) 5.00 mm
(C) 6.53 mm
(D) 12.1 mm
29. The nearest elastic curve of the shown beam is:
(A)
(B)
(C)
(D)

For the shown frame, it is required to determine the horizontal and vertical displacements at \boldsymbol{c} ($\boldsymbol{\delta}_{\boldsymbol{c}}$ and $\boldsymbol{\delta}_{\boldsymbol{c} v}$) and the slope at $\boldsymbol{c}\left(\boldsymbol{\theta}_{\boldsymbol{c}}\right)$ using the virtual work method. The relative moments of inertia are given between brackets. $E I=1.0 \times 10^{6} \mathrm{kN} . \mathrm{m}^{2}$.
30. The bending moment at \boldsymbol{b} due to the given load is:
(A) $-20 \mathrm{kN.m}$
(B) $-360 \mathrm{kN} . \mathrm{m}$
(C) $-160 \mathrm{kN} . \mathrm{m}$
(D) -240 kN.m
31. The bending moment at \boldsymbol{a} due to the given load is:
(A) $-60 \mathrm{kN} . \mathrm{m}$
(B) $-600 \mathrm{kN} . \mathrm{m}$
(C) $-240 \mathrm{kN} . \mathrm{m}$
(D) $-360 \mathrm{kN} . \mathrm{m}$
32. The value of the bending moment at \boldsymbol{b} due to unit vertical load at \boldsymbol{c} is:
(A) $6 \mathrm{kN} . \mathrm{m}$
(B) $1 \mathrm{kN} . \mathrm{m}$
(C) $4 \mathrm{kN} . \mathrm{m}$
(D) $24 \mathrm{kN} . \mathrm{m}$

33. The horizontal displacement at $\boldsymbol{c}, \boldsymbol{\delta}_{\boldsymbol{c h}}$ is:
(A) $8.1 \mathrm{~mm} \rightarrow$
(B) $3.2 \mathrm{~mm} \leftarrow$
(C) $2.1 \mathrm{~mm} \rightarrow$
(D) $0.1 \mathrm{~mm} \rightarrow$
34. The vertical displacement at $\boldsymbol{c}, \boldsymbol{\delta}_{c v}$ is:
(A) $5 \mathrm{~mm} \uparrow$
(B) $2 \mathrm{~mm} \downarrow$
(C) $26 \mathrm{~mm} \downarrow$
(D) $9 \mathrm{~mm} \downarrow$
35. The slope at $\boldsymbol{c}, \boldsymbol{\theta}_{\boldsymbol{c}}$ is:
(A) 0.0017 rad U
(B) 0.0097 rad U
(C) $0.0072 \mathrm{rad} \circlearrowright$
(D) 0.017 rad U

For the shown truss, it is required to determine the horizontal and vertical displacement at \boldsymbol{d} ($\delta_{\boldsymbol{d} h}$ and $\delta_{d v}$) using the virtual work method. $E A=1000 \mathrm{kN}$
36. The force in member $\boldsymbol{c} \boldsymbol{d}$ due to the given load $\left(N_{o}\right)$ is:
(A) -1.4 kN
(B) -1 kN
(C) 1 kN
(D) zero
37. The force in member $\boldsymbol{b} \boldsymbol{d}$ due to the given load $\left(N_{o}\right)$ is:
(A) zero
(B) -1 kN
(C) 1 kN
(D) -1.4 kN
38. The value of the force in member $\boldsymbol{c} \boldsymbol{d}$ due to vertical unit load at \boldsymbol{d} is:
(A) zero
(B) 1 kN
(C) 0.5 kN
(D) 1.4 kN
39. The horizontal displacement at $\boldsymbol{d}, \boldsymbol{\delta}_{\boldsymbol{d} h}$ is:

(A) $12.1 \mathrm{~mm} \rightarrow$
(B) $19.3 \mathrm{~mm} \leftarrow$
(C) $3.2 \mathrm{~mm} \leftarrow$
(D) $7.9 \mathrm{~mm} \leftarrow$
40. The vertical displacement at $\boldsymbol{d}, \boldsymbol{\delta}_{\boldsymbol{d} v}$ is:
(A) $12 \mathrm{~mm} \uparrow$
(B) $4 \mathrm{~mm} \uparrow$
(C) zero
(D) $20 \mathrm{~mm} \downarrow$

For the shown beam in $\mathbf{1}$ and frames in $\mathbf{2}$ and $\mathbf{3}$, it is required to draw the influence line (I.L.) for some functions (reaction - shear force - bending moment).
41. The diagram shown in \mathbf{A} is the I.L for:
(A) \boldsymbol{A}_{y} of the beam $\mathbf{1}$.
(B) $\boldsymbol{A}_{\boldsymbol{y}}$ of the frame 2.
(C) \boldsymbol{A}_{y} of the frame 3.
(D) Shear force at \boldsymbol{A} of the frame $\mathbf{3}$.
42. The diagram shown in \mathbf{B} is the I.L for:
(A) B_{y} of the beam 1.
(B) $\boldsymbol{C}_{\boldsymbol{y}}$ of the beam 1 .
(C) $\boldsymbol{E}_{\boldsymbol{y}}$ of the frame $\mathbf{2}$.
(D) $\boldsymbol{E}_{\boldsymbol{y}}$ of the frame $\mathbf{3}$.
43. The diagram shown in \mathbf{C} is the I.L for:
(A) \boldsymbol{B}_{y} of the beam 1.
(B) \boldsymbol{A}_{x} of the frame 2.
(C) \boldsymbol{A}_{x} of the frame 3.
(D) Bending moment at $\boldsymbol{C}_{\text {right }}$ of the frame 3.
44. The diagram shown in \mathbf{D} is the I.L for:
(A) $\boldsymbol{A}_{\boldsymbol{y}}$ of the beam 1.
(B) \boldsymbol{A}_{y} of the frame 2.
(C) Shear force at \boldsymbol{E} of the beam $\mathbf{1}$.
(D) Shear force at \boldsymbol{E} of the frame 2.
45. The diagram shown in \mathbf{E} is the I.L for:
(A) A_{y} of the beam 1.
(B) A_{y} of the frame 2.
(C) \boldsymbol{A}_{y} of the frame 3 .
(D) Shear force at \boldsymbol{E} of the frame 3.
46. The diagram shown in \mathbf{F} is the I.L for:
(A) $\boldsymbol{A}_{\boldsymbol{x}}$ of the beam $\mathbf{1}$.
(B) \boldsymbol{A}_{y} of the frame 2.
(C) $\boldsymbol{A}_{\boldsymbol{x}}$ of the frame 3 .
(D) \boldsymbol{A}_{y} of the frame 3.
47. The diagram shown in \mathbf{G} is the I.L for:
(A) Bending moment at \boldsymbol{D} of the beam $\mathbf{1}$.
(B) Bending moment at $\boldsymbol{C}_{\text {right }}$ of the frame 3.
(C) Shear force at $\boldsymbol{C}_{\text {right }}$ of the frame 3.
(D) C_{y} of the beam 1.
48. The diagram shown in \mathbf{H} is the I.L for:
(A) Bending moment at \boldsymbol{E} of the beam $\mathbf{1}$.
(B) Shear force at \boldsymbol{E} of the beam 1.
(C) A_{y} of the beam 1.
(D) \boldsymbol{A}_{y} of the frame 2.
49. The diagram shown in \mathbf{I} is the $I . L$ for:
(A) Bending moment at \boldsymbol{D} of the beam $\mathbf{1}$.
(B) Bending moment at $\boldsymbol{C}_{\text {right }}$ of the frame 3.
(C) Shear force at $\boldsymbol{C}_{\text {right }}$ of the frame 3.
(D) \boldsymbol{C}_{y} of the beam in $\mathbf{1}$.
50. The maximum $\boldsymbol{E}_{\boldsymbol{y}}$ of the frame $\mathbf{3}$ caused by the shown moving truck is:
(A) 168.6 kN .
(B) 195 kN .
(C) 285.6 kN .
(D) 390.1 kN .

(A)
(3)

(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)

With my best wishes
Dr. M. Abdel-Kader

