GIZA ENGINEERING INSTITUTE

Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)A
Course Code: CIV 211
Date: 21/11/2021
Mid-Term Exam
No. of Questions: 20 (Attempt all questions)

Choose the nearest answer.

For the shown beam, it is required to determine the deflections at \boldsymbol{B} and \boldsymbol{D} and the slopes at \boldsymbol{A} and \boldsymbol{D} by using the double integration method.
$E I=1 \times 10^{4} \mathrm{kN} . \mathrm{m}^{2}$

1. The vertical reaction at the roller support \boldsymbol{C} is:

(A) $30 \mathrm{kN} \uparrow$
(B) $15 \mathrm{kN} \downarrow$
(C) $15 \mathrm{kN} \uparrow$
(D) zero
2. The vertical reaction at the hinged support \boldsymbol{A} is:
(A) zero
(B) $40 \mathrm{kN} \downarrow$
(C) $15 \mathrm{kN} \uparrow$
(D) $15 \mathrm{kN} \downarrow$
3. The bending moment equation (M) in the last part $\boldsymbol{C D}$ is:
(A) $30(x-3)-30(x-6)$
(B) $-30(x-3)+30(x-6)$
(C) $-3(x-6)+30(x-8)$
(D) $30(x+3)+30(x+6)$
4. $E I y^{\prime}=\ldots \ldots$
(A) $-30(x-3)^{2}+30(x-6)^{2}+C_{1}$
(B) $-15(x-3)^{2}+15(x-6)^{2}+C_{1}$
(C) $-1.5(x-6)^{2}+15(x-8)^{2}$
(D) $15(x+3)^{2}+15(x+6)^{2}+C_{1}$
5. $E I y=\ldots \ldots$
(A) $-5(x-3)^{3}+5(x-6)^{3}$
(B) $-5(x)^{3}+5(x)^{3}+C_{1} x+C_{2}$
(C) $-5(x-3)^{3}+5(x-6)^{3}+C_{1} x+C_{2}$
(D) $5(x)^{3}+5(x+6)^{3}+C_{1}+C_{2}$
6. Boundary Conditions are:
(A) At $x=3, y=0 \&$ at $x=6, y=0$
(B) At $x=0, y=0 \&$ at $x=8, y^{\prime}=0$
(C) At $x=0, y=0$ \& at $x=6, y=0$
7. C_{1} and C_{2} are:
(A) $C_{1}=0$ and $C_{2}=22.5$
(B) $C_{1}=-22.5$ and $C_{2}=10$
(C) $C_{1}=2.5$ and $C_{2}=10$
(D) $C_{1}=22.5$ and $C_{2}=0$
8. The deflection at $\boldsymbol{B}, \boldsymbol{y}_{\boldsymbol{B}}$ is:
(A) $11.2 \mathrm{~mm} \uparrow$
(B) $6.75 \mathrm{~mm} \uparrow$
(C) zero
(D) $11.2 \mathrm{~mm} \downarrow$
9. The deflection at $\boldsymbol{D}, \boldsymbol{y}_{\boldsymbol{D}}$ is:
(A) $11.2 \mathrm{~mm} \uparrow$
(B) $10.1 \mathrm{~mm} \uparrow$
(C) zero
(D) $40.5 \mathrm{~mm} \downarrow$
10. The value of slope at $\boldsymbol{A}, \boldsymbol{\theta}_{A}=y_{A}^{\prime}$ is:
(A) 0.00225 rad
(B) 0.702 rad
(C) 0.012 rad
(D) 0.055 rad
11. The value of slope at $\boldsymbol{D}, \boldsymbol{\theta}_{D}=y_{D}^{\prime}$ is:
(A) 0.02925 rad
(B) 0.702 rad
(C) 0.055 rad
(D) 0.041 rad
12. The nearest elastic curve of the shown beam is:
(A)
(B)
(C)
(D)

For the shown beam, it is required to determine the slope at \boldsymbol{A} and the deflection at \boldsymbol{C} by using the moment-area method. $E I=2.5 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$
13. The vertical reaction at the hinged support \boldsymbol{A} is:
(A) $60 k N \uparrow$
(B) $60 \mathrm{kN} \downarrow$
(C) $6 \mathrm{kN} \uparrow$
(D) $6 \mathrm{kN} \downarrow$
14. The vertical reaction at the roller support \boldsymbol{B} is:
(A) $60 k N \uparrow$
(B) $60 \mathrm{kN} \downarrow$
(C) $6 \mathrm{kN} \uparrow$
(D) $6 \mathrm{kN} \downarrow$

15. The bending moment at \boldsymbol{C} is:
$\begin{array}{ll}\text { (C) } 24 \mathrm{kN} . \mathrm{m} & \text { (D) } 60 \mathrm{kN} . \mathrm{m}\end{array}$
16. The bending moment at \boldsymbol{D} is:
(A) $-24 \mathrm{kN} . \mathrm{m}$
(B) $-60 \mathrm{kN} . \mathrm{m}$
(C) $40 \mathrm{kN} . \mathrm{m}$
(D) $-16 \mathrm{kN} . \mathrm{m}$
17. The deviation of \boldsymbol{B} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{B} / \boldsymbol{A}}$ is:
(A) 0.032 m
(B) 0.016 m
(C) 0.048 m
(D) 0.096 m
18. The slope of the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{\theta}_{A}$ is:
(A) 0.0032 rad U
(B) $0.0096 \mathrm{rad} \circlearrowright$
(C) $0.0016 \mathrm{rad} \circlearrowright$
(D) $0.0048 \mathrm{rad} \cup$
19. The deflection at $\boldsymbol{C}, \boldsymbol{\delta}_{\boldsymbol{C}}$ is:
(A) $12.8 \mathrm{~mm} \downarrow$
(B) $5.5 \mathrm{~mm} \uparrow$
(C) zero
(D) $4.6 \mathrm{~mm} \downarrow$
20. The nearest elastic curve of the shown beam is:

