	Ministry of Higher Education Giza Higher Institute of Engineering & Technology Civil Engineering Department		Academic Year :	2017/2018
			Semester :	First
			Level :	3 rd
18	Course Name: Theory of Structures (3)		Time :	3 Hours
مرجد الحيزة للم	Course Code : CIV 301	Date : 30 / 12 / 2017	Examiner: Dr. M	. Abdel-Kader
GNEERING INSTITUTE		Final Evam		

Total Marks: 60

Final Exam

120 kN/m

* * * * * * * * *

2 m

2 m

120 kN

b

В

3

20 kN

No. of Questions:5 (Attempt all questions)

3 m

80 kN/m

5 m

3 m

ſ

300 kN

1 m

60 kN.m

2

60 kN

Question (1): (12 Marks)

For the shown beam, using the **double integration method**:

- (a) Determine the deflections at B and the mid-span CE.
- (b) Determine the slopes just to the left and the right of C.
- (c) Sketch the elastic curve of the beam.

 $EI = 2 \times 10^7 N.m^2$

Question (2): (12 Marks)

For the shown beam, using the moment-area method:

- (a) Determine the slope at *a*.
- (b) Determine the deflections at *b* and *d*.
- (c) Sketch the elastic curve of the beam.

 $EI = 150 MN.m^2$

Question (3): (12 Marks)

For the shown beam, using the **conjugate beam method**:

- (a) Determine the slope at *C*.
- (b) Determine the deflections at *B* and *D*.
- (c) Sketch the elastic curve of the beam.

 $EI = 40 \times 10^3 \ kN.m^2$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal displacements at B $(\delta_{Bh}).$

For the frame, $EI = 20 \times 10^3 kN.m^2$. For the truss, assume that all members have the same axial rigidity EA = 30000 kN.

3 m

Question (5): (12 Marks)

For the shown beam, draw the influence line for:

- (a) The reactions A_v , B_v and C_v .
- (b) The shear forces at the sections E and B_{right} .
- (c) The bending moments at the sections E and G.

Also, determine the maximum moment at E caused by a concentrated moving load of 90 kN and a uniform live load of 30 kN/m.

2 m