Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301
Date : 30/12/2017
Final Exam
Total Marks: 60

Question (1): (12 Marks)

For the shown beam, using the double integration method:
(a) Determine the deflections at B and
the mid-span $C E$.
(b) Determine the slopes just to the left
and the right of C.
(c) Sketch the elastic curve of the beam.
$E I=2 \times 10^{7} N . m^{2}$

Question (2): (12 Marks)

For the shown beam, using the moment-area method:
(a) Determine the slope at a.
(b) Determine the deflections at b and d.
(c) Sketch the elastic curve of the beam.
$E I=150 M N . m^{2}$

Question (3): (12 Marks)

For the shown beam, using the conjugate beam method:
(a) Determine the slope at \boldsymbol{C}.
(b) Determine the deflections at B and \boldsymbol{D}.
(c) Sketch the elastic curve of the beam.
$E I=40 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$

Academic Year :
2017/2018
Semester :
Level :
First

Time: 3 Hours
Examiner: Dr. M. Abdel-Kader

No. of Questions:5 (Attempt all questions)

EI 2×10 N.m

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal displacements at \boldsymbol{B} $\left(\delta_{B h}\right)$.
For the frame, $E I=20 \times 10^{3} \mathrm{kN} \cdot \mathrm{m}^{2}$. For the truss, assume that all members have the same axial rigidity $E A=30000 \mathrm{kN}$.

Question (5): (12 Marks)

For the shown beam, draw the influence line for:

(a) The reactions A_{y}, B_{y} and C_{y}.
(b) The shear forces at the sections E and $B_{r i g h t}$.
(c) The bending moments at the sections E and G.

Also, determine the maximum moment at E caused by a concentrated moving load of 90 kN and a uniform live load of $30 \mathrm{kN} / \mathrm{m}$.

