GIZRENGINEERING INSTITUTE

Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301
Date : 30/12/2017

Answer of Final Exam

Total Marks: 60

Academic Year :
Semester :
Level :
Time:
Examiner: Dr. M. Abdel-Kader

No. of Questions:5 (Attempt all questions)

Solution:

- Note that there is an intermediate hinge above the intermediate support at C. This intermediate hinge separates the beam to two parts ($A C$ and $C E$) as shown.
- First, determine the reactions as shown.

$$
\begin{aligned}
E I y^{\prime \prime} & =M \\
E I y^{\prime \prime} & =180 x-120 x^{2} / 2+120(x-2)^{2} / 2 \\
E I y^{\prime} & =90 x^{2}-20 x^{3}+20(x-2)^{3}+C_{1} \\
E I y & =30 x^{3}-5 x^{4}+5(x-2)^{4}+C_{1} x+C_{2}
\end{aligned}
$$

Boundary Conditions:

$$
\begin{aligned}
& \text { At } x=0, y=0 \rightarrow C_{2}=0 \\
& \text { At } x=4, y=0 \rightarrow \\
& 0=30(4)^{3}-5(4)^{4}+5(2)^{4}+C_{1}(4)+0 \rightarrow C_{1}=-180
\end{aligned}
$$

So, the general equation of the deflection y and slope $y^{\prime}(\theta)$ at any distance x is,

$$
\begin{aligned}
E I y^{\prime} & =90 x^{2}-20 x^{3}+20(x-2)^{3}-180 \\
E I y & =30 x^{3}-5 x^{4}+5(x-2)^{4}-180 x
\end{aligned}
$$

The deflection at B is (at $x=2 \mathrm{~m}$)

$$
\begin{aligned}
E I \delta_{B} & =30(2)^{3}-5(2)^{4}-180(2)=-200 \\
\delta_{B} & =-200 / 20000=-0.01 \mathrm{~m}
\end{aligned}
$$

$$
\delta_{B}=10 \mathrm{~mm} \downarrow
$$

The slope at section just to the left of C is (at $x=4 m$) $E I y^{\prime}=90(4)^{2}-20(4)^{3}+20(2)^{3}-180=140$
$\theta_{\text {c left }}=140 / 20000=0.007 \mathrm{rad}$
θ_{c} left $=0.401^{\circ} U$

$E I y^{\prime \prime}=M$
EI $y^{\prime \prime}=75 x-300(x-3)$
EIy $y^{\prime}=37.5 x^{2}-150(x-3)^{2}+C_{3}$
$E I y=12.5 x^{3}-50(x-3)^{3}+C_{3} x+C_{4}$

Boundary Conditions:

$$
\begin{aligned}
& \text { At } x=0, y=0 \rightarrow C_{4}=0 \\
& \text { At } x=4, y=0 \rightarrow \\
& 0=12.5(4)^{3}-50(1)^{4}+C_{3}(4)+0 \rightarrow C_{3}=-187.5
\end{aligned}
$$

So, the general equation of the deflection y and slope $y^{\prime}(\theta)$ at any distance x is,

$$
\begin{aligned}
E I y^{\prime} & =37.5 x^{2}-150(x-3)^{2}-187.5 \\
E I y & =12.5 x^{3}-50(x-3)^{3}-187.5 x
\end{aligned}
$$

The deflection at mid-span is (at $x=2 \mathrm{~m}$)

$$
\begin{aligned}
& E I \delta_{\text {mid-span }}=12.5(2)^{3}-187.5(2)=-275 \\
& \delta_{\text {mid-span }}=-275 / 20000=-0.01375 \mathrm{~m}
\end{aligned}
$$

$$
\delta_{\text {mid-span }}=13.75 \mathrm{~mm} \downarrow
$$

The slope at section just to the right of C is (at $x=0$)
$E I y^{\prime}=37.5(0)^{2}-187.5=-187.5$
$\theta_{\text {c right }}=-187.5 / 20000=-0.0094 \mathrm{rad}$
$\theta_{\text {c right }}=0.537^{\circ} \mathrm{U}$

Question (2): ($\mathbf{1 2}$ Marks)

For the shown beam, using the moment-area method:
(a) Determine the slope at a.
(b) Determine the deflections at b and d.
(c) Sketch the elastic curve of the beam.
$E I=150 M N . m^{2}$

Solution:

The bending moment diagram may be drawn as shown.

(a) The slope at a

$\theta_{a}=\frac{t_{c / a}}{8}$
Apply the second moment-area theorem, then
$t_{c / a}=\frac{1}{E I}\left[\right.$ Area $\left._{a c} \cdot \bar{X}_{c}\right]$
$\left.(2.5)+\left(-\frac{1}{2} \times 8 \times 120\right)\left(\frac{8}{3}\right)\right]$

$$
=\frac{33610}{3 E I}=\frac{33610}{3 \times 150000}=3351 / 45000=0.07469 \mathrm{~m}
$$

$=\frac{33610}{3 E I}=\frac{33610}{3 \times 150000}=3351 / 45000=0.07469 \mathrm{~m}$
$\therefore \theta_{a}=\frac{t_{c / a}}{8}=\frac{0.07469}{8}=0.009336 \mathrm{rad}=0.535^{\circ}$

$$
\theta_{a}=0.535^{\circ} \mathrm{C}
$$

(b) The deflection at \boldsymbol{b}

The deflection at $b=\delta_{b}=b b^{\prime \prime}-b^{\prime} b^{\prime \prime}=(3 / 8) t_{c / a}-t_{b / a}$

$$
=\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 600\right)(6)+\left(\frac{1}{2} \times 5 \times 600\right)\left(\frac{10}{3}\right)+\left(\frac{2}{3} \times 5 \times 250\right)\right.
$$

Applying the second moment-area theorem, then

$$
\begin{aligned}
& t_{b / a}=\frac{1}{E I}[\text { First moment of area of M }- \text { diagram between } a \text { and } b \text { about } b] \\
&=\frac{1}{E I}\left[\text { Area }_{a b} \cdot \bar{X}_{b}\right]=\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 600\right)(1)+\left(-\frac{1}{2} \times 3 \times 45\right)(1)\right]=\frac{3330}{4 E I}=\frac{3330}{4 \times 150000}=0.00555 \mathrm{~m} \\
& \therefore \delta_{b}=b b^{\prime \prime}-b^{\prime} b^{\prime \prime}=(3 / 8) t_{c l a}-t_{b / a}=(3 / 8)(0.07469)-0.00555=0.02246 \mathrm{~m} \quad \delta_{b}=22.46 \mathrm{~mm}
\end{aligned}
$$

(c) The deflection at d

$$
\begin{aligned}
t_{d / a} & =\frac{1}{E I}\left[\text { Area }_{a d} \cdot \bar{X}_{d}\right] \\
& =\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 600\right)(8)+\left(\frac{1}{2} \times 5 \times 600\right)\left(\frac{16}{3}\right)+\left(\frac{2}{3} \times 5 \times 250\right)(4.5)+\left(-\frac{1}{2} \times 8 \times 120\right)\left(\frac{14}{3}\right)+\left(-\frac{1}{2} \times 2 \times 120\right)\left(\frac{4}{3}\right)\right] \\
& =\frac{16550}{E I}=\frac{16550}{150000}=331 / 3000=0.110333 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \delta_{d}=d^{\prime} d^{\prime \prime}-d d^{\prime \prime}=t_{d / a}-(10 / 8) t_{c / a}=0.110333-(10 / 8)(0.07469)=0.01697 \mathrm{~m}
$$

Elastic curve

Question (3): (12 Marks)

For the shown beam, using the conjugate beam method:
(a) Determine the slope at \boldsymbol{C}.
(b) Determine the deflections at B and \boldsymbol{D}.
(c) Sketch the elastic curve of the beam.
$E I=40 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$

Solution:

Reaction:
$+\cup \sum M_{A}=0$
$A_{y}(6)-20 \times 3+60=0 \rightarrow A_{y}=0$

First construct the bending moment diagram of the real beam.

The resulting moment diagram is then loaded to the conjugate beam.
For the conjugate beam, determine the elastic reaction (R_{C}, M_{B} and M_{D}).
$W_{1}=\frac{1}{2} \times 3 \times 60=90 \mathrm{kN} . \mathrm{m}^{2}$
$W_{2}=2 \times 60=120 \mathrm{kN} . \mathrm{m}^{2}$
$M_{C \text { for left part }}=0$

$R_{A}(6)-W_{l}(1)=0 \rightarrow R_{A}=15 \mathrm{kN} . \mathrm{m}^{2} \rightarrow R_{C}=90-15=75 \mathrm{kN} . \mathrm{m}^{2}$
$M_{B}=-R_{A}(3)=-15(3)=-45 \mathrm{kN} \cdot \mathrm{m}^{3}$
$M_{D}=R_{C}(2)+W_{2}(1)=75(2)+120(1)=270 \mathrm{kN} \cdot \mathrm{m}^{3}$
(a) Slope at $\mathrm{C}=R_{C} / E I=75 / 40000=0.001875 \mathrm{rad}=0.1074^{\circ} \therefore \theta_{c}=0.11^{\circ}$
(b) Deflection at $B=M_{B} / E I=-45 / 40000=-0.001125 \mathrm{~m}=-1.125 \mathrm{~mm} \quad \therefore \delta_{B}=1.125 \mathrm{~mm}$ 苗

Deflection at $D=M_{D} / E I=270 / 40000=0.00675 \mathrm{~m}=6.75 \mathrm{~mm} \quad \therefore \delta_{D}=6.75 \mathrm{~mm}$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal displacements at \boldsymbol{B} $\left(\delta_{B h}\right)$. For the frame, $E I=20 \times 10^{3} \mathrm{kN} \cdot \mathrm{m}^{2}$. For the truss, assume that all members have the same axial rigidity $E A$ $=30000 \mathrm{kN}$.

Solution:

$\delta_{B h}=\int \frac{M_{o} M_{1}}{E I} d L=\frac{1}{E I}\left[\left(-\frac{1}{2} \times 4 \times 40\right)\left(-\frac{2}{3} \times 4\right)+\left(\frac{2}{3} \times 4 \times 40\right)\left(-\frac{1}{2} \times 4\right)\right]=0 \quad \therefore \delta_{B h}=0$

$$
\begin{aligned}
\delta_{B h} & =\sum \frac{N_{0} N_{1} L}{E A} \\
& =\frac{4(20 \times 1 \times 3)+2(20 \sqrt{2} \times \sqrt{2} \times 3 \sqrt{2})}{30000}=0.01931 \mathrm{~m}=19.31 \mathrm{~mm} \quad \therefore \quad \delta_{B h}=19.31 \mathrm{~mm} \leftarrow
\end{aligned}
$$

Question (5): (12 Marks)

For the shown beam, draw the influence line for:
(a) The reactions A_{y}, B_{y} and C_{y}.
(b) The shear forces at the sections E and $B_{\text {right }}$.
(c) The bending moments at the sections E and G.

Also, determine the maximum moment at E caused by a concentrated moving load of 90 kN and a uniform live load of $30 \mathrm{kN} / \mathrm{m}$.

For concentrated moving load, $M_{E \max }=(90)(10)=900 \mathrm{kN} . \mathrm{m}$ t
For uniform live load, $M_{E \max }=(0.5 \times 40 \times 10)(30)=6000 \mathrm{kN} . \mathrm{m}$ t $\mathbf{~ J}$
Total maximum moment at $\boldsymbol{E}, M_{E \max }=900+6000=6900 \mathrm{kN} . \mathrm{m}$ t

