Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)A
Course Code: CIV 211
Date: 6/3/2021

Total Marks: 70

Academic Year:
2020/2021
Semester:
Level:
First
2 Civil
Time:
3 Hours
 GIZR ENGINEERING INSTITUTE

Choose the nearest answer. (a1, a5, b1, b5, d6)

For the shown beam, it is required to determine the deflections at $\boldsymbol{A}, \boldsymbol{C}$ and \boldsymbol{E} and the slope at \boldsymbol{A} by using the double integration method.
$E I=5 \times 10^{4} \mathrm{kN} . \mathrm{m}^{2}$

1. The vertical reaction at the hinged support \boldsymbol{B} is:
(A) $40 k N \uparrow$
(B) $40 k N \downarrow$
(C) $80 \mathrm{kN} \uparrow$
(D) zero
2. The vertical reaction at the hinged support \boldsymbol{D} is:
(A) $40 k N \uparrow$
(B) $40 \mathrm{kN} \downarrow$
(C) $80 k N \uparrow$
(D) $10 \mathrm{kN} \downarrow$
3. The bending moment equation (M) in the last part $\boldsymbol{D} \boldsymbol{E}$ is:
(A) $-80(x)+40(x-7)$
(B) $-80(x)^{0}+40(x-7)$
(C) $-80(x)^{2}+40(x)$
(D) $-80(x)^{0}-40(x)^{2}$
4. $E I y^{\prime}=\ldots \ldots$.
(A) $-80(x)+40(x-7)$
(B) $-80 x+20(x-7)^{2}+C_{l}$
(C) $-80(x)^{2}+40(x)$
(D) $-80(x)^{0}-40(x)^{2}$
5. $E I y=$
(A) $-40(x)^{2}+20(x-7)^{2}+C_{1} x$
(B) $-80 x+20(x-7)^{2}+C_{1} x+C_{2}$
(C) $-40 x^{2}+20(x-7)^{3} / 3+C_{1} x+C_{2}$
(D) $-40+C_{1} x+C_{2}$
6. Boundary Conditions are:
(A) At $x=0, y=0 \quad \&$ at $x=9, y=0$
(B) At $x=2, y=0 \&$ at $x=9, y^{\prime}=0$
(C) At $x=2, y=0 \&$ at $x=7, y=0$
7. C_{1} and C_{2} are:
(A) $C_{1}=360$ and $C_{2}=-560$
(B) $C_{1}=360$ and $C_{2}=0$
(C) $C_{1}=30$ and $C_{2}=-50$
(D) $C_{1}=0$ and $C_{2}=-560$
8. The deflection at $\boldsymbol{A}, \boldsymbol{y}_{\boldsymbol{A}}$ is:
(A) $11.2 \mathrm{~mm} \uparrow$
(B) $5 \mathrm{~mm} \uparrow$
(C) zero
(D) $11.2 \mathrm{~mm} \downarrow$
9. The deflection at $\boldsymbol{C}, \boldsymbol{y}_{\boldsymbol{C}}$ is:
(A) $11.2 \mathrm{~mm} \uparrow$
(B) $10.1 \mathrm{~mm} \uparrow$
(C) zero
(D) $5 \mathrm{~mm} \uparrow$
10. The deflection at $\boldsymbol{E}, \boldsymbol{y}_{\boldsymbol{E}}$ is:
(A) $11.2 \mathrm{~mm} \uparrow$
(B) $10.1 \mathrm{~mm} \uparrow$
(C) zero
(D) $10.1 \mathrm{~mm} \downarrow$
11. The slope at $\boldsymbol{A}, \boldsymbol{\theta}_{A}=y_{A}^{\prime}$ is:
(A) 0.0072 rad
(B) 0.72 rad
(C) 0.12 rad
(D) 0.41 rad

For the shown beam, it is required to determine the slopes at $\boldsymbol{A} \& \boldsymbol{C}$ and the deflection at \boldsymbol{D} by using the moment-area method. $E I=2.5 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$
12. The vertical reaction at the hinged support \boldsymbol{A} is:
(A) $20 k N \uparrow$
(B) $20 \mathrm{kN} \downarrow$
(C) $4 k N \uparrow$
(D) $4 k N \downarrow$
13. The bending moment at \boldsymbol{C} is:

(A) $32 \mathrm{kN} . \mathrm{m}$
(B) $16 \mathrm{kN.m}$
(C) $40 \mathrm{kN} . \mathrm{m}$
(D) $-16 \mathrm{kN} . \mathrm{m}$
14. The bending moment at \boldsymbol{D} is:
(A) $32 \mathrm{kN} . \mathrm{m}$
(B) $16 \mathrm{kN} . \mathrm{m}$
(C) $40 \mathrm{kN.m}$
(D) $-16 \mathrm{kN} . \mathrm{m}$
15. The deviation of \boldsymbol{B} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{B} / \boldsymbol{A}}$ is:
(A) 0.032 m
(B) 0.016 m
(C) 0.064 m
(D) 0.046 m
16. The slope of the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{\theta}_{A}$ is:
(A) $0.0032 \mathrm{rad} U$
(B) 0.0064 rad U
(C) $0.0016 \mathrm{rad} \cup$
(D) $0.0016 \mathrm{rad} \cup$
17. The slope of the tangent of the elastic curve at $\boldsymbol{C}, \boldsymbol{\theta}_{C}$ is:
(A) $0.0064 \mathrm{rad} \cup$
(B) 0.0064 rad U
(C) $0.0016 \mathrm{rad} \circlearrowright$
(D) $0.0016 \mathrm{rad} \cup$
18. The deviation of \boldsymbol{D} relative to the tangent of the elastic curve at $\boldsymbol{A}, \boldsymbol{t}_{\boldsymbol{D} / \boldsymbol{A}}$ is:
(A) 0.032 m
(B) 0.024 m
(C) 0.047 m
(D) zero
19. The deflection at $\boldsymbol{D}, \delta_{D}$ is:
(A) $4.27 \mathrm{~mm} \uparrow$
(B) $8.53 \mathrm{~mm} \uparrow$
(C) zero
(D) $4.27 \mathrm{~mm} \downarrow$
20. The nearest elastic curve of the shown beam is:
(A) 1
(B) 2
(C) 3
(D) 4

(1)

(2)

(3)

(4)

For the shown beam, it is required to determine the slopes at $\boldsymbol{B} \& \boldsymbol{D}$, the deflection at \boldsymbol{C} and the maximum deflection for the beam by using the conjugate beam method. $E I=2.5 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.

21. After loading M on the conjugate beam, the elastic reaction at support \boldsymbol{A} is:

(A) $32 \mathrm{kN} \cdot \mathrm{m}^{2} \uparrow$
(B) $64 \mathrm{kN} . \mathrm{m}^{2} \downarrow$
(C) $32 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
(D) $16 \mathrm{kN} \cdot \mathrm{m}^{2} \uparrow$
22. After loading M on the conjugate beam, the elastic reaction at support \boldsymbol{B} is:
(A) $32 \mathrm{kN} \cdot \mathrm{m}^{2} \uparrow$
(B) $16 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
(C) $32 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
(D) $15 \mathrm{kN} \cdot \mathrm{m}^{2} \downarrow$
23. The slope of the tangent of the elastic curve at $\boldsymbol{B}, \theta_{B}$ is:
(A) $0.0064 \mathrm{rad} \cup$
(B) $0.0064 \mathrm{rad} \circlearrowright$
(C) 0.0016 rad O
(D) $0.0016 \mathrm{rad} \cup$
24. The slope of the tangent of the elastic curve at $\boldsymbol{D}, \boldsymbol{\theta}_{D}$ is:
(A) $0.0064 \mathrm{rad} \cup$
(B) $0.0064 \mathrm{rad} \circlearrowright$
(C) 0.0016 rad C
(D) $0.0016 \mathrm{rad} \cup$
25. The deflection at $\boldsymbol{C}, \boldsymbol{\delta}_{\boldsymbol{C}}$ is:
(A) $4.27 \mathrm{~mm} \uparrow$
(B) $8.53 \mathrm{~mm} \uparrow$
(C) zero
(D) $8.53 \mathrm{~mm} \downarrow$
26. The maximum downward deflection is at a distance from support $\boldsymbol{A}=$:
(A) 3.828 m
(B) 5.00 m
(C) 2.828 m
(D) 0.046 m
27. The maximum downward deflection is:
(A) 12.1 mm
(B) 5.00 mm
(C) 8.53 mm
(D) 46.1 mm

For the shown frame, it is required to determine the vertical displacement at $\boldsymbol{d}\left(\boldsymbol{\delta}_{\boldsymbol{d} v}\right)$ using the virtual work method. $E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.
28. The bending moment due to the given load just at the left of \boldsymbol{b} is:
(A) $-75 \mathrm{kN} . \mathrm{m}$
(B) $-240 \mathrm{kN} . \mathrm{m}$
(C) $-60 \mathrm{kN} . \mathrm{m}$
(D) $-150 \mathrm{kN} . \mathrm{m}$
29. The bending moment due to the given load $\left(M_{o}\right)$ just at the right of \boldsymbol{b} is:
(A) zero
(B) $-240 \mathrm{kN} . \mathrm{m}$
(C) $-60 \mathrm{kN} . \mathrm{m}$
(D) $-150 \mathrm{kN} . \mathrm{m}$
30. The bending moment due to unit load $\left(M_{l}\right)$ at \boldsymbol{d} just at the right of \boldsymbol{b} is:
(A) zero
(B) $-240 \mathrm{kN} . \mathrm{m}$
(C) $-60 \mathrm{kN} . \mathrm{m}$
(D) $-150 \mathrm{kN} . \mathrm{m}$
31. The vertical displacement at $\boldsymbol{d}, \boldsymbol{\delta}_{d v}$ is:
(A) $5.2 \mathrm{~mm} \uparrow$
(B) $26 \mathrm{~mm} \uparrow$
(C) zero
(D) $20 \mathrm{~mm} \downarrow$

For the shown truss, it is required to determine the vertical displacement at $\boldsymbol{d}\left(\boldsymbol{\delta}_{\boldsymbol{d} v}\right)$ using the virtual work method. $E A=1000 \mathrm{kN}$
32. The force in member $\boldsymbol{c} \boldsymbol{d}$ due to the given load $\left(N_{o}\right)$ is:
(A) zero
(B) -5 kN
(C) 5 kN
(D) -7.1 kN
33. The force in member $\boldsymbol{b} \boldsymbol{d}$ due to the given load $\left(N_{o}\right)$ is:
(A) zero
(B) -5 kN
(C) 5 kN
(D) -7.1 kN
34. The force in member $\boldsymbol{c} \boldsymbol{d}$ due to the vertical unit load $\left(N_{l}\right)$ is:
(A) zero
(B) -5 kN
(C) 5 kN
(D) -7.1 kN
35. The vertical displacement at $\boldsymbol{d}, \boldsymbol{\delta}_{\boldsymbol{d} v}$ is:
(A) $12 \mathrm{~mm} \uparrow$
(B) $20 \mathrm{~mm} \uparrow$
(C) zero
(D) $20 \mathrm{~mm} \downarrow$

For the shown beam, it is required to draw the influence line for the reaction $\boldsymbol{C}_{\boldsymbol{y}}$ (I.L.for $\boldsymbol{C}_{\boldsymbol{y}}$) and the bending moment at the section \boldsymbol{G} (I.L.for $\boldsymbol{M}_{\boldsymbol{G}}$). Also, determine the maximum moment at \boldsymbol{G} caused by the shown moving truck.

36. The value of I.L.for $\boldsymbol{C}_{\boldsymbol{y}}$ when the unit load at \boldsymbol{C} and is:
(A) zero
(B) 0.5
(C) 1
(D) 1.5
37. The value of I.L.for $\boldsymbol{C}_{\boldsymbol{y}}$ when the unit load at \boldsymbol{D} and is:
(A) zero
(B) 0.5
(C) 1
(D) 1.5
38. The value of I.L.for $\boldsymbol{M}_{\boldsymbol{G}}$ when the unit load at \boldsymbol{C} and is:
(A) zero
(B) 0.5
(C) 1
(D) 1.5
39. The value of I.L.for $\boldsymbol{M}_{\boldsymbol{G}}$ when the unit load at \boldsymbol{G} and is:
(A) zero
(B) 0.5
(C) 1
(D) 7.5
40. The maximum moment at \boldsymbol{G} caused by the shown moving truck is:
(A) zero
(B) $1090 \mathrm{kN} . \mathrm{m}$
(C) $190 \mathrm{kN} . \mathrm{m}$
(D) $-190 \mathrm{kN} . \mathrm{m}$

