GIZA ENGINEERING INSTITUTE

Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (1)A
Course Code: CIV 111

Date: 7 / 3 / 2021
Final Exam

Academic Year:
Semester:
Level:
Time:
2020/2021
First
$1^{\text {st }}$ Civil
3 Hours
Examiner: Dr. M. Abdel-Kader

1. The shown beam is:
(A) Statically Indeterminate. (B) Unstable. (C) Statically Determinate. (D) Simple beam.
2. The horizontal component of the inclined force at \boldsymbol{A} is:
(A) $7.5 \mathrm{kN} \leftarrow$
(B) $10 \mathrm{kN} \rightarrow$
(C) $7.5 \mathrm{kN} \rightarrow$
(D) $10 \mathrm{kN} \leftarrow$
3. The vertical component of the inclined force at \boldsymbol{A} is:
(A) $10 \mathrm{kN} \uparrow$
(B) $10 \mathrm{kN} \downarrow$
(C) $7.5 \mathrm{kN} \uparrow$
(D) $7.5 \mathrm{kN} \downarrow$
4. The horizontal reaction at the fixed support \boldsymbol{D} is:
(A) $7.5 \mathrm{kN} \leftarrow$
(B) $10 \mathrm{kN} \rightarrow$
(C) $7.5 \mathrm{kN} \rightarrow$
(D) $10 \mathrm{kN} \leftarrow$
5. The vertical reaction at the roller support \boldsymbol{B} is:
(A) $10 k N \uparrow$
(B) $12 \mathrm{kN} \uparrow$
(C) $7.5 \mathrm{kN} \uparrow$
(D) $12 \mathrm{kN} \downarrow$
6. The vertical reaction at the intermediate hinge \boldsymbol{C} is:
(A) 15 kN
(B) 12 kN
(C) 30 kN
(D) 10 kN
7. The vertical reaction at the fixed support \boldsymbol{D} is:
(A) $45 k N \uparrow$
(B) $12 \mathrm{kN} \uparrow$
(C) $7.5 \mathrm{kN} \uparrow$
(D) $20 k N \uparrow$
8. The moment reaction at the fixed support \boldsymbol{D} is:
(A) $30 \mathrm{kN} . \mathrm{m} \cup$
(B) $45 \mathrm{kN} . \mathrm{m}$ U
(C) $30 \mathrm{kN} . \mathrm{m}$ U
(D) $15 \mathrm{kN} \cdot \mathrm{m} \cup$
9. The normal force at \boldsymbol{c} is:
(A) 15 kN
(B) zero
(C) $-8 k N$
10. The shear force at \boldsymbol{a} is:
(A) 15 kN
(B) 36 kN
(C) -21 kN
11. The shear force just at the left of \boldsymbol{b} is:
(A) zero
(B) 11 kN
(C) -11 kN
(D) 7 kN
12. The shear force just at the right of \boldsymbol{b} is:

(A) zero
(B) 11 kN
(C) -11 kN
(D) 7 kN
13. The shear force at \boldsymbol{d} is:
(A) 8
(B) 11 kN
(C) -11 kN
(D) -7 kN
14. The shear force at f is:
(A) 15
(B) 11 kN
(C) -11 kN
(D) 8 kN
15. The bending moment at \boldsymbol{a} is:
(A) $-30 \mathrm{kN} . \mathrm{m}$
(B) $45 \mathrm{kN} . \mathrm{m}$
(C) $36 \mathrm{kN} . \mathrm{m}$
(D) $-36 \mathrm{kN} . \mathrm{m}$
16. The bending moment at \boldsymbol{c} is:
(A) $-30 \mathrm{kN} . \mathrm{m}$
(B) $45 \mathrm{kN} . \mathrm{m}$
(C) zero
(D) $15 \mathrm{kN} . \mathrm{m}$
17. The bending moment just at the left of \boldsymbol{d} is:
(A) $-30 \mathrm{kN} . \mathrm{m}$
(B) $-2 \mathrm{kN} . \mathrm{m}$
(C) $-10 \mathrm{kN} . \mathrm{m}$
(D) $15 \mathrm{kN} . \mathrm{m}$
18. The bending moment just at the right of \boldsymbol{d} is:
(A) $-30 \mathrm{kN} . \mathrm{m}$
(B) $-2 k N . m$
(C) $-10 \mathrm{kN} . \mathrm{m}$
(D) $15 \mathrm{kN} . \mathrm{m}$
19. The bending moment at \boldsymbol{e} is:
(A) $16 \mathrm{kN} . \mathrm{m}$
(B) $-2 \mathrm{kN} . \mathrm{m}$
(C) $-16 \mathrm{kN} . \mathrm{m}$
(D) $15 \mathrm{kN} . \mathrm{m}$
20. The bending moment at a distance of $4 m$ from the fixed support \boldsymbol{a} is:
(A) zero
(B) $60 \mathrm{kN} . \mathrm{m}$
(C) $-2.25 \mathrm{kN} . \mathrm{m}$
(D) $2.25 \mathrm{kN} . \mathrm{m}$
21. The maximum positive bending moment for the beam is:
(A) zero
(B) $16 \mathrm{kN} . \mathrm{m}$
(C) $12.25 \mathrm{kN} . \mathrm{m}$
(D) $2.25 \mathrm{kN} . \mathrm{m}$
22. The maximum negative bending moment for the beam is:
(A) zero
(B) $-16 \mathrm{kN} . \mathrm{m}$
(C) $-12.25 \mathrm{kN} . \mathrm{m}$
(D) $-36 \mathrm{kN} . \mathrm{m}$
23. The horizontal reaction at the fixed support \boldsymbol{B} is:
(A) $8 k N \leftarrow$
(B) $14 \mathrm{kN} \rightarrow$
(C) $8 \mathrm{kN} \rightarrow$
(D) $10 \mathrm{kN} \leftarrow$
24. The vertical reaction at the roller support \boldsymbol{A} is:
(A) $10 \mathrm{kN} \uparrow$
(B) $14 \mathrm{kN} \uparrow$
(C) $8 k N \uparrow$
(D) $14 k N \downarrow$
25. The vertical reaction at the intermediate hinge \boldsymbol{C} is:
(A) 14 kN
(B) 10 kN
(C) 22 kN
(D) 28 kN
26. The vertical reaction at the fixed support \boldsymbol{B} is:
(A) $14 k N \uparrow$
(B) $12 \mathrm{kN} \uparrow$
(C) $8 k N^{\uparrow}$
(D) $22 k N \uparrow$
27. The moment reaction at the fixed support \boldsymbol{B} is:

(A) 88 kN.m U
(B) $88 \mathrm{kN.m} \mathrm{U}$
(C) 8 kN.m U
(D) $22 \mathrm{kN} . \mathrm{m} \cup$
28. The normal force between \boldsymbol{A} and \boldsymbol{C} is:
(A) $-8 k N$
(B) 10 kN
(C) 8 kN
(D) zero
29. The normal force between \boldsymbol{a} and \boldsymbol{b} is:
(A) $3 t$
(B) $-2 t$
(C) $-5 t$
(D) $2 t$
30. The normal force between \boldsymbol{b} and \boldsymbol{c} is:
(A) $4.243 t$
(B) $-4.243 t$
(C) $-5 t$
(D) $3 t$
31. The normal force between \boldsymbol{c} and \boldsymbol{d} is:
(A) $5 t$
(B) $-3 t$
(C) $-16 t$
(D) $3 t$
32. The shear force between \boldsymbol{a} and \boldsymbol{b} is:
(A) $5 t$
(B) $3 t$
(C) $-2 t$
(D) $2 t$
33. The shear force just at the right of \boldsymbol{c} is:
(A) zero
(B) $11 t$
(C) $-2 t$
(D) $-3 t$
34. The shear force at \boldsymbol{e} is:
(A) 19
(B) $28 t$
(C) $13 t$
(D) $16 t$
35. The bending moment at \boldsymbol{d} is:
(A) -30 t.m
(B) $19 \mathrm{t} . \mathrm{m}$
(C) $36 \mathrm{t} . \mathrm{m}$
(D) -40 t.m
36. The bending moment at \boldsymbol{e} is:
(A) -30 t.m
(B) $19 \mathrm{t} . \mathrm{m}$
(C) 13 t.m
(D) $28 \mathrm{t} . \mathrm{m}$
37. The force in the member $1(A B)$ is:
(A) 10 kNC
(B) 10 kN T
(C) 5 kN T
(D) zero
38. The force in the member $4(B D)$ is:
(A) 10 kNC
(B) 10 kN T
(C) 5 kN T
(D) 5 kNC
39. The force in the member $8(D F)$ is:
(A) 10 kNC
(B) 10 kN T
(C) 5 kN T
(D) 5 kNC
40. The force in the member $10(E G)$ is:
(A) 10 kN C
(B) 10 kN T
(C) 5 kN T
(D) 5 kNC

41. The shown structure is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
42. The shown structure is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
43. The shown structure is:
(A) Unstable
(B) Stat. Det.
44. The shown structure is:
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
45. The shown structure is:
(A) Unstable
(B) Stat. Det.
(C) Stat. Ind. to the $1^{\text {st }}$ degree
(D) Stat. Ind. to the $2^{\text {nd }}$ degree
