Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301
Date : 13/11/2017

Academic Year : 2017/2018
Semester : First
Level :
Time: $\quad 11 / 4$ Hours
Examiner: Dr. M. Abdel-Kader

Answer of Mid-Term Exam

Total Marks: 20
No. of Questions:2 (Attempt all questions)

Name:

Code:

Question (1): (10 Marks)

Using the double integration method, determine the deflection at \boldsymbol{b}, the slope at section just to the left of \boldsymbol{b}, and sketch the elastic curve of the beam. $E I=6 \times 10^{5} \mathrm{kN} . \mathrm{m}^{2}$

Solution:

- First, determine the reactions as shown.
- Note that all the required $\left(y_{b}\right.$ and $y_{b l e f t)}^{\prime}$ are in the region $a-b$ and no reaction comes form part $b-c$ to part $a-b$, so only part $a-b$ should be studied.

$$
\begin{aligned}
& \frac{\text { For region } \boldsymbol{a}-\boldsymbol{b}}{E I y^{\prime \prime}=M} \\
& E I y^{\prime \prime}=200 x-1200 \\
& E I y^{\prime}=100 x^{2}-1200 x+C_{1} \\
& E I y=\frac{100}{3} x^{3}-600 x^{2}+C_{1} x+C_{2}
\end{aligned}
$$

Boundary Conditions:

$$
\begin{aligned}
& \text { At } x=0, y^{\prime}=0 \rightarrow C_{1}=0 \\
& \text { At } x=0, y=0 \rightarrow C_{2}=0
\end{aligned}
$$

1200 kN.m

So, the general equation of the deflection y and slope $y^{\prime}(\theta)$ at any distance x is,

$$
\begin{aligned}
& E I y=\frac{100}{3} x^{3}-600 x^{2} \\
& E I y^{\prime}=100 x^{2}-1200 x
\end{aligned}
$$

The deflection at \boldsymbol{b} is at $x=6 \mathrm{~m}$

$$
\begin{gathered}
E I \delta_{b}=\frac{100}{3}(6)^{3}-600(6)^{2}=-14400 \\
\delta_{b}=-14400 / 600000=-0.024 \mathrm{~m}
\end{gathered}
$$

The slope at section just to the left of \boldsymbol{b} is at $x=6 \mathrm{~m}$

$$
\begin{aligned}
E I y^{\prime} & =100(6)^{2}-1200(6)=-3600 \\
\theta_{b} & =-3600 / 600000=-0.006 \mathrm{rad} \quad \theta_{b}=0.344^{\circ} \mathrm{U}
\end{aligned}
$$

Question (2): (10 Marks)

For the shown beam, using the moment-area method, determine:
(a) The slope at a
(b) The deflection at b
(c) The deflection at d
and sketch the elastic curve of the beam.

$$
E I=60 M N \cdot m^{2}
$$

Solution:

The bending moment diagram may be drawn as shown.

(a) The slope at a

$\theta_{a}=\frac{t_{c / a}}{8}$
Apply the second moment-area theorem, then
$t_{c / a}=\frac{1}{E I}\left[\right.$ Area $\left._{a c} \cdot \bar{X}_{c}\right]$
$=\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 300\right)(6)+\left(\frac{1}{2} \times 5 \times 300\right)\left(\frac{10}{3}\right)+\left(\frac{2}{3} \times 5 \times 125\right)(2.5)+\left(-\frac{1}{2} \times 8 \times 60\right)\left(\frac{8}{3}\right)\right]$
$=\frac{16805}{3 E I}=\frac{16805}{3 \times 60000}=3351 / 36000=0.09336 \mathrm{~m}$
$\therefore \theta_{a}=\frac{t_{c / a}}{8}=\frac{0.09336}{8}=0.01167 \mathrm{rad}=0.6686^{\circ}$

$$
\theta_{a}=0.67^{\circ} \circlearrowright
$$

(b) The deflection at \boldsymbol{b}

The deflection at $b=\delta_{b}=b b^{\prime \prime}-b^{\prime} b^{\prime \prime}=(3 / 8) t_{c / a}-t_{b / a}$

Applying the second moment-area theorem, then

$$
\begin{aligned}
t_{b / a} & =\frac{1}{E I}[\text { First moment of area of M }- \text { diagram between } a \text { and } b \text { about } b] \\
& =\frac{1}{E I}\left[\text { Area }_{a b} \cdot \bar{X}_{b}\right]=\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 300\right)(1)+\left(-\frac{1}{2} \times 3 \times 22.5\right)(1)\right]=\frac{1665}{4 E I}=\frac{1665}{4 \times 60000}=0.0069375 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \delta_{b}=b b^{\prime \prime}-b^{\prime} b^{\prime \prime}=(3 / 8) t_{c / a}-t_{b l a}=(3 / 8)(0.09336)-0.0069375=0.0280725 \mathrm{~m} \quad \delta_{b}=28.1 \mathrm{~mm} \downarrow
$$

(c) The deflection at d

$$
\begin{aligned}
t_{d / a} & =\frac{1}{E I}\left[\text { Area }_{a d} \cdot \bar{X}_{d}\right] \\
& =\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 300\right)(8)+\left(\frac{1}{2} \times 5 \times 300\right)\left(\frac{16}{3}\right)+\left(\frac{2}{3} \times 5 \times 125\right)(4.5)+\left(-\frac{1}{2} \times 8 \times 60\right)\left(\frac{14}{3}\right)+\left(-\frac{1}{2} \times 2 \times 60\right)\left(\frac{4}{3}\right)\right] \\
& =\frac{8275}{E I}=\frac{8275}{60000}=331 / 2400=0.1379167 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \delta_{d}=d^{\prime} d^{\prime \prime}-d d^{\prime \prime}=t_{d / a}-(10 / 8) t_{c / a}=0.1379167-(10 / 8)(0.09336)=0.021217 \mathrm{~m}
$$

Elastic curve

