Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Academic Year : 2016-2017

Civil Engineering Department
Course Name: Theory of Structures (3)
Time: $\mathbf{3}$ Hours
Course Code : CIV 301

Answer of Final Exam

Question (1): (12 Marks)

For the shown beam, using the double integration method, determine: the deflections at $\boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{F} and the slope at \boldsymbol{C}. Also, sketch the elastic curve of the beam. $E I=2 \times 10^{5} \mathrm{kN} . \mathrm{m}^{2}$

Solution:

Reactions:

$$
\begin{aligned}
&-120(12)+A_{y}(10)-(72+48)(3)=0 \\
& \rightarrow A_{y}=180 k N \uparrow \\
& 180+B_{y}-120-72- 48=0 \\
& \rightarrow B_{y}=60 k N \uparrow
\end{aligned}
$$

$$
M=-\left.120 x\right|_{\mathrm{I}}+\left.180(x-2)\right|_{\mathrm{II}}-12(x-6)^{2} / 2|-48(x-9)|_{\mathrm{IV}}^{\frac{\mathrm{II}}{}}+60(x-12)+12\left(x^{\mathrm{II}}-12\right)^{2} /\left.2\right|_{\mathrm{V}} ^{\mathrm{IV}}
$$

$$
E I y^{\prime \prime}=-\left.120 x\right|_{\mathrm{I}}+\left.180(x-2)\right|_{\mathrm{II}} ^{\mathrm{II}}-\left.6(x-6)^{2}\right|_{\mathrm{II}} ^{\mathrm{II}}-\left.48(x-9)\right|_{\mathrm{IV}}+60(x-12)+\left.6(x-12)^{2}\right|_{\mathrm{v}}
$$

$$
E I y^{\prime}=-60 x^{2}\left|+90(x-2)^{2}\right|-2(x-6)^{3}\left|-24(x-9)^{2}\right|+30(x-12)^{2}+\left.2(x-12)^{3}\right|_{\mathrm{V}}+C_{1}
$$

$$
\text { EI } y=-\left.20 x^{3}\right|_{\mathrm{I}} ^{\mathrm{I}}+\left.30(x-2)^{3}\right|_{\mathrm{HI}} ^{\mathrm{II}}-\left.0.5(x-6)^{4}\right|_{\mathrm{III}} ^{\mathrm{II}}-\left.8(x-9)^{3}\right|_{\mathrm{IV}} ^{\mathrm{IV}}+10(x-12)^{3}+\left.0.5(x-12)^{4}\right|_{\mathrm{V}} ^{\mathrm{V}}+C_{1} x+C_{2}
$$

Boundary Conditions:

$$
\begin{aligned}
& \text { At } x=2 m, y=0 \rightarrow 0=-20(2)^{3}+C_{1}(2)+C_{2} \quad \rightarrow 2 C_{1}+C_{2}=160 \\
& \text { At } x=12 m, y=0 \rightarrow 0=-20(12)^{3}+30(10)^{3}-0.5(6)^{4}-8(3)^{3}+0+0+12 C_{1}+C_{2} \\
& \\
& \rightarrow 12 C_{1}+C_{2}=5424 \quad C_{1}=526.4 \text { and } C_{2}=-892.8
\end{aligned}
$$

So, the general equation of the deflection y at any distance x is,
EI $y=-\left.20 x^{3}\right|_{\mathrm{I}}+30(x-2)_{\mathrm{II}}^{3}\left|-0.5(x-6)^{4}\right|_{\mathrm{II}}-\left.8(x-9)^{3}\right|_{\mathrm{IV}}+10(x-12)^{3}+\left.0.5(x-12)^{4}\right|_{\mathrm{V}}+526.4 x-892.8$
(a) the deflection at $C(x=0)$: in Region I:
$E I y_{C}=-20(0)^{3}-30(0)+526.4(0)-892.8=-892.8$

$$
y_{C}=-892.8 /\left(0.2 \times 10^{6}\right)=-0.00446 \mathrm{~m}=-4.46 \mathrm{~mm} \quad y_{C}=4.46 \mathrm{~mm} \downarrow
$$

the deflection at $\boldsymbol{D}(\boldsymbol{x}=\mathbf{6})$: in Region II:

$E I y_{D}=-20(6)^{3}+30(4)^{3}+526.4(6)-892.8=-134.4$

$$
y_{D}=-134.4 /\left(0.2 \times 10^{6}\right)=-0.00067 \mathrm{~m}=-0.67 \mathrm{~mm}
$$

$y_{D}=0.67 \mathrm{~mm}$
the deflection at $E(x=9)$: in Region III:
$E I y_{E}=-20(9)^{3}+30(7)^{3}-0.5(3)^{4}+526.4(9)-892.8=-485.7 \rightarrow y_{E}=-485.7 /\left(0.2 \times 10^{6}\right)=-0.00243 \mathrm{~m}=-2.43 \mathrm{~mm}$
the deflection at $\boldsymbol{F}(x=14)$: in Region V:

$$
\begin{aligned}
E I y_{F} & =-20(14)^{3}+30(12)^{3}-0.5(8)^{4}-8(5)^{3}+10(2)^{3}+0.5(2)^{4}+526.4(14)-892.8 \\
& =+476.8 \\
y_{F} & =476.8 /\left(0.2 \times 10^{6}\right)=-0.002384 \mathrm{~m}=+2.4 \mathrm{~mm}
\end{aligned}
$$

(b) the slope at $C(x=0)$: in Region I:

EI $y^{\prime}{ }_{C}=-60(0)^{2}+526.4=+526.4 \rightarrow \theta \theta_{C}=y^{\prime}{ }_{C}=+526.4 /\left(0.2 \times 10^{6}\right)$
$\theta_{C}=+0.002632 \mathrm{rad}=0.15^{\circ}$

Elastic curve

Question (2): (12 Marks)

For the shown beam, using the moment-area method, determine:
(a) the slope at \boldsymbol{A}
(b) the deflection at \boldsymbol{D}
(c) the deflection at \boldsymbol{C}
and sketch the elastic curve of the beam.

$E=400 \mathrm{GPa}$ and $I=1300 \mathrm{~cm}^{4}$

Solution:

$$
\begin{aligned}
& E=400 \mathrm{GPa}=400 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2} \\
& I=1300 \mathrm{~cm}^{4}=1300 \times 10^{-8} \mathrm{~m}^{4} \\
& E I=\left(400 \times 10^{6}\right)\left(1300 \times 10^{-8}\right) \\
& \quad=5200 \mathrm{kN} . \mathrm{m}^{2}
\end{aligned}
$$

(a) Slope at A

- Since the slope at $\boldsymbol{D}\left(\theta_{D}\right)$ is equal to zero, the change in slope between the tangents of the elastic curve at points A and $B\left(\theta_{D A}\right)$ is equal to the slope at $\boldsymbol{A}\left(\theta_{A}\right)$,

$$
\theta_{D A}=\theta_{D}-\theta_{A}=0-\theta_{A}=-\theta_{A}
$$

then

$$
\begin{aligned}
-\theta_{A} & =\theta_{D A}=\frac{1}{E I}\left[\text { Area }_{A D}\right] \\
& =\frac{1}{5200}\left[\left(\frac{1}{2} \times 2 \times 40\right)+(2 \times 40)\right]=\frac{120}{5200}=0.023 \text { rads } \\
\theta_{A} & =-0.023 \times 180 / \pi=-1.32 \text { degrees }
\end{aligned}
$$

$$
\therefore \theta_{A}=-1.32^{\circ}
$$

(b) Deflection at D

- The deflection at $\boldsymbol{D}\left(\delta_{D}\right)$ is equal to the deviation of the point \boldsymbol{A} above the tangent to the elastic curve at \boldsymbol{D}, then

$$
\begin{aligned}
\delta_{D}=t_{A / D} & =\frac{1}{E I}\left[\operatorname{Area}_{A D} \cdot \bar{X}_{A}\right]=\frac{1}{5200}\left[\left(\frac{1}{2} \times 2 \times 40\right)(4 / 3)+(2 \times 40)(3)\right]=0.0564 \mathrm{~m} \\
& =0.0564 \times 1000=56.4 \mathrm{~mm}
\end{aligned}
$$

(b) Deflection at C

- The deflection at $\boldsymbol{C}\left(\delta_{C}\right)$ is equal to the deflection at $\boldsymbol{D}\left(\delta_{D}\right)$ minus the deviation of the point \boldsymbol{C} above the tangent to the elastic curve at $\boldsymbol{D}\left(t_{C / D}\right)$, then

$$
\begin{aligned}
\delta_{C} & =\delta_{D}-t_{C I D}=\delta_{D}-\frac{1}{E I}\left[\text { Area }_{C D} \cdot \bar{X}_{C}\right] \\
& =0.0564-\frac{1}{5200}[(2 \times 40)(1)]=0.0564-0.01538=0.04102 \mathrm{~m} \\
& =0.04102 \times 1000=41.02 \mathrm{~mm} \quad \therefore \delta_{C}=41 \mathrm{~mm}
\end{aligned}
$$

Elastic curve

Question (3): (12 Marks)

For the shown beam of variable cross-section (the relative moments of inertia are given between brackets), using the conjugate beam method, determine the slope at \boldsymbol{B} and the deflections at \boldsymbol{C} and \boldsymbol{D}. Also, sketch the elastic curve of the beam. $E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$

Solution:

Reaction:
$+\circlearrowright \sum M_{C}=0: 36(6)-B_{y}(9)=0 \quad \rightarrow B_{y}=24 k N \uparrow$
$+\uparrow \sum F_{y}=0: \quad B_{y}+C_{y}-36=0 \rightarrow C_{y}=12 k N \uparrow$
Construct the bending moment diagram of the real beam. The resulting moment diagram is then loaded to the conjugate beam.
$W_{1}=\frac{1}{2} \times 3 \times 18=27 \mathrm{kN} . \mathrm{m}^{2}$
$W_{2}=\frac{1}{2} \times 6 \times 72=216 \mathrm{kN} . \mathrm{m}^{2}$
$W_{3}=\frac{1}{2} \times 3 \times 72=108 \mathrm{kN} . \mathrm{m}^{2}$
For the conjugate beam, determine the elastic reactions (R_{B} and R_{C}) at the supports.

$$
\begin{aligned}
& +\cup \sum M_{C}=0 \\
& W_{1}(2)+W_{2}(4)+W_{3}(7)-R_{B}(9)=0 \\
& 9 R_{B}=27(2)+216(4)+108(7) \\
& \rightarrow R_{B}=186 \mathrm{kN} \cdot \mathrm{~m}^{2} \\
& +\uparrow \sum F_{y}=0 \quad \rightarrow R_{C}=111 \mathrm{kN} . \mathrm{m}^{2}
\end{aligned}
$$

Slope at \boldsymbol{B}

$$
\theta_{B}=-R_{B} / E I=186 / 20 \times 10^{3}=-0.0093 \mathrm{rad}=-0.53^{\circ}
$$

Deflection at C

$\delta_{C}=$ Moment at $C / E I=\left(W_{1} \times 2\right) / E I=54 / 20 \times 10^{3}=0.0027 \mathrm{~m}=2.7 \mathrm{~mm}$
$\delta_{C}=2.7 \mathrm{~mm}$

Deflection at \boldsymbol{D}

$$
\begin{aligned}
\hline \delta_{D}=\text { Moment at } D / E I=\left(R_{B} \times 3-W_{3} \times 1\right) / E I= & (186 \times 3-108 \times 1) / 20 \times 10^{3} \\
& =0.0225 \mathrm{~m}=22.5 \mathrm{~mm}
\end{aligned}
$$

$\delta_{D}=22.5 \mathrm{~mm} \downarrow$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal displacements at $\boldsymbol{D}\left(\delta_{D h}\right)$.
For the frame, $E I=50 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.
For the truss, assume that all members have the same axial rigidity $E A=10000 \mathrm{kN}$.

Solution:

(a) Horizontal displacement at $\boldsymbol{D}, \delta_{D h}$

- Draw M_{0}-Diagram due to the applied loads.
- Apply a horizontal load of $1 k N$ at point D and draw M_{1}-Diagram due to this $1 k N$ load only. then,

$$
\begin{aligned}
& \delta_{D h}=\int \frac{M_{o} M_{1}}{E I} d L \\
& \delta_{D h}=\frac{1}{E I}\left[\left(\frac{2}{3} \times 4 \times 40\right)\left(\frac{1}{2} \times 6\right)\right]=\frac{320}{E I} \\
& \delta_{D h}=\frac{320}{50 \times 10^{3}}=0.0064 \mathrm{~m}=6.4 \mathrm{~mm}
\end{aligned}
$$

$\therefore \delta_{D h}=6.4 \mathrm{~mm} \rightarrow$
(b) Horizontal displacement at $D, \delta_{D h}$

- Calculate N_{0} due to the applied loads.
- Apply a horizontal load of $1 k N$ at point D and calculate N_{1} due to this 1 kN load only.

For N_{0}
Joint $\boldsymbol{D}:+\rightarrow \sum F_{x}=F_{D B}(0.4472)-F_{D A}(0.4472)+15=0$

$$
\begin{array}{r}
\therefore F_{D B}-F_{D A}=-33.54 \ldots \tag{1}\\
+\uparrow \sum F_{y}=-F_{D B}(0.8944)-F_{D A}(0.8944)=0 \\
\therefore F_{D B}=-F_{C A} \quad \ldots \ldots
\end{array}
$$

Joint \boldsymbol{D} for N_{0}

$\underline{\text { Joint } D \text { for } N_{1}}$

From (1) in (2) $\quad F_{D A}=16.77$ and $F_{D B}=-16.77$

$$
\therefore F_{D A}=16.77 \mathrm{~T} \text { and } F_{D B}=16.77 \mathrm{C} \quad \ldots \ldots \text { and so on }
$$

then,

$$
\delta_{D h}=\sum \frac{N_{0} N_{1} L}{E A}
$$

$$
=\frac{(2 \times 16.77 \times 1.118 \times 4.472+7.5 \times 0.5 \times 4)}{10000} \quad=0.01827 \mathrm{~m}=18.27 \mathrm{~mm} \quad \therefore \delta_{D h}=18.3 \mathrm{~mm} \rightarrow
$$

Question (5): (12 Marks)

For the shown beam, draw the influence lines for:
(a) the reactions A_{y}, B_{y}.
(b) the shear forces at C and B_{r}
(c) the bending moment at C

Also, determine the maximum positive moment at C caused by the shown moving truck.

Solution:

(a)

(b)
(c)

I. L. for M_{C} in $k N . m$
$M_{D \max +v e}=100(0.85 \times 20)+100(20)+25(0.95 \times 20)=4175 k N . m$ t
$M_{D \text { max }+\mathrm{ve}}=4175 \mathrm{kN} . m \mathbf{t} \mathbf{~}$
$M_{D \max -v e}=100(-10)+100(0.7 \times-10)+25(0.6 \times-10)=1850 \mathrm{kN} . \mathrm{m}$
$M_{D \text { max-ve }}=1855 \mathrm{kN} . \mathrm{m}$ I]

