Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Academic Year : 2016-2017

Civil Engineering Department

Final Exam

- Attempt all questions.
- The Exam consists of $\mathbf{5}$ questions in $\mathbf{1}$ page.
- Maximum grade is $\mathbf{6 0}$ Marks

Question (1): (12 Marks)

For the shown beam, using the double integration method, determine: the deflections at $\boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{F} and the slope at \boldsymbol{C}. Also, sketch the elastic curve of the beam.

Question (2): (12 Marks)

For the shown beam, using the moment-area method, determine:
(a) the slope at \boldsymbol{A}
(b) the deflection at \boldsymbol{D}
(c) the deflection at \boldsymbol{C}
and sketch the elastic curve of the beam.

$$
E=400 G P a \text { and } I=1300 \mathrm{~cm}^{4}
$$

Question (3): (12 Marks)

For the shown beam of variable cross-section (the relative moments of inertia are given between brackets), using the conjugate beam method, determine the slope at \boldsymbol{B} and the deflections at \boldsymbol{C} and \boldsymbol{D}. Also, sketch the elastic curve of the beam.

$$
E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}
$$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal displacements at $\boldsymbol{D}\left(\delta_{D h}\right)$.
For the frame, $E I=50 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.
For the truss, assume that all members have the same axial rigidity $E A=10000 \mathrm{kN}$.

Question (5): (12 Marks)

For the shown beam, draw the influence lines for: (a) the reactions $\boldsymbol{A}_{\boldsymbol{y}}$ and $\boldsymbol{B}_{\boldsymbol{y}}$
(b) the shear forces at \boldsymbol{C} and \boldsymbol{B}_{r}
(c) the bending moment at \boldsymbol{C}

Also, determine the maximum positive moment at C caused by the shown moving truck.

