Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301

Academic Year : 2015-2016 Semester: First Level : $3^{\text {rd }}$
Time: $\mathbf{1}^{11 / 2}$ Hours
Date: 22/11/2015
Examiner: Dr. M. Abdel-Kader

Answer of Mid-Term Exam

Question (1): ($\mathbf{1 0}$ Marks)

For the shown beam, using the moment-area method, determine:
(a) the deflection at B
(b) the slope at C
(c) the deflection at C
and sketch the elastic curve of the beam.
$E I=90.0 \times 10^{6} \mathrm{~N} . \mathrm{m}^{2}$

Solution:

The bending moment diagram may be drawn as shown.

(a) the deflection at \boldsymbol{B}

The deflection at B is equal to the deviation of point B relative to the tangent of the elastic curve at point $A, t_{B / A}$. Applying the second moment-area theorem, then
$\delta_{B}=t_{B / A}$
$=\frac{1}{E I}[$ First moment of area of $\mathrm{M}-$ diagram between A and B about $B]$
$=\frac{1}{E I}\left[\right.$ Area $\left._{A B} \cdot \bar{X}_{B}\right]=\frac{1}{2 E I}\left[(-3 \times 60)(1.5)+\left(-\frac{1}{2} \times 3 \times 120\right)(2)\right]$
$=-\frac{315}{E I}=-\frac{315}{90000}=-0.0035 \mathrm{~m}=3.5 \mathrm{~mm} \downarrow$
$\delta_{B}=3.5 \mathrm{~mm}$

(b) the slope at C

Since the slope at $A\left(\theta_{A}\right)$ is equal to zero, the change in slope between the tangents of the elastic curve at points C and $A\left(\theta_{C A}\right)$ is equal to the slope at $C\left(\theta_{C}\right)$,

$$
\theta_{C A}=\theta_{C}-\theta_{A}=\theta_{C}-0=\theta_{C}
$$

Apply the first moment-area theorem, then

$\theta_{C}=\theta_{C A}=\frac{1}{E I}[$ Area of M -diagram between the points A and $C]$
$=\frac{1}{E I}\left[\right.$ Area $\left._{A C}\right]=\frac{1}{2 E I}\left[(-3 \times 60)+\left(-\frac{1}{2} \times 3 \times 120\right)\right]+\frac{1}{E I}\left[-\frac{1}{2} \times 3 \times 60\right]=-\frac{270}{E I}=-\frac{270}{90000}=-0.003 \mathrm{rad}$
$\theta_{C}=0.003 \mathrm{rad}=0.172^{\circ} \mathrm{U}$

(c) the deflection at C

$\delta_{C}=t_{C / A}=\frac{1}{E I}[$ First moment of area of M -diagram between A and C about $C]$

$$
=\frac{1}{E I}\left[\text { Area }_{A C} \cdot \bar{X}_{C}\right]=\frac{1}{2 E I}\left[(-3 \times 60)(4.5)+\left(-\frac{1}{2} \times 3 \times 120\right)(5)\right]+\frac{1}{E I}\left[\left(-\frac{1}{2} \times 3 \times 60\right)(2)\right]
$$

$$
=-\frac{1035}{E I}=-\frac{1035}{90000}=-0.0115 m
$$

$$
=11.5 \mathrm{~mm} \downarrow
$$

For the shown beam, using the conjugate beam method, determine:
(a) the slope at A
(b) the slope at B
(c) the deflection at B
and sketch the elastic curve of the beam.
$E=200 \mathrm{GPa}$
$I=290 \times 10^{6} \mathrm{~mm}^{4}$

Solution:

Reaction:

$+\cup \sum M_{C}=0$:
$A_{y}(8)-60(5)-40 \times 5(2.5)=0 \rightarrow A_{y}=100 k N \uparrow$
$+\uparrow \sum F_{y}=0:$

$$
A_{y}+C_{y}-60-40 \times 5=0 \rightarrow C_{y}=160 k N \uparrow
$$

Construct the bending moment diagram of the real beam.
The resulting moment diagram is then loaded to the conjugate beam.
For the conjugate beam, determine the elastic reaction (R_{A} and R_{C}) at supports.

$$
\begin{aligned}
& W_{1}=\frac{1}{2} \times 3 \times 300=450 \mathrm{kN} . \mathrm{m}^{2} \\
& W_{2}=\frac{1}{2} \times 5 \times 300=750 \mathrm{kN} . \mathrm{m}^{2} \\
& W_{3}=\frac{2}{3} \times 5 \times 125=1250 / 3 \mathrm{kN} . \mathrm{m}^{2}
\end{aligned}
$$

$+\cup \sum M_{C}=0$

$$
\begin{gathered}
R_{A}(8)-W_{1}(5+1)-W_{2}(2 \times 5 / 3)-W_{3}(5 / 2)=0 \\
8 R_{A}=450(6)+750(10 / 3)+(1250 / 3)(2.5) \quad \rightarrow R_{A}=780.2 \mathrm{kN} . \mathrm{m}^{2}
\end{gathered}
$$

$+\uparrow \sum F_{y}=0 \rightarrow R_{C}=836.5 \mathrm{kN} . \mathrm{m}^{2}$
$E=200 \mathrm{GPa}=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2} \quad I=290 \times 10^{6} \mathrm{~mm}^{4}=290 \times 10^{-6} \mathrm{~m}^{4} \quad E I=58000 \mathrm{kN} \cdot \mathrm{m}^{2}$

(a) the slope at \boldsymbol{A}

$$
\theta_{A}=R_{A} / E I=780.2 / 58000=0.0135 \mathrm{rad}=0.77^{\circ}
$$

(b) the slope at \boldsymbol{B}

$$
\begin{equation*}
\theta_{B}=\text { Shear at } B / E I=\left(R_{A}-W_{1}\right) / 58000=(780.2-450) / 58000=0.0057 \mathrm{rad}=0.33^{\circ} \tag{B}
\end{equation*}
$$

(c) the deflection at \boldsymbol{B}

$\delta_{B}=$ Moment at $B / E I=\left(R_{A} \times 3-W_{1} \times 1\right) / 58000=1890.6 / 58000=0.0326 \mathrm{~m}=32.6 \mathrm{~mm}$

Elastic curve

