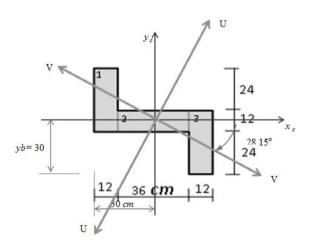


Ministry of Higher Education Giza Higher Institute of Engineering & Technology **Civil Engineering Department** Course Name: Theory of Structures (1)B Course Code : CIV 121 Date : 17 / 3 / 2018

Academic Year : 2017/2018 Semester : Second 1st Civil Level : Time : 1 Hour Examiner: Dr. Maha Nazeef Dr. M. Abdel-Kader

ton (2 Thota) -

-1.5


Answer of Mid-Term Exam

Total Marks: 30	No. of Questions:2 (Attempt all questions)				
Student Name:	Code:				
Question (1): (15 Marks) For the shown cross-section, determine the following: (a) The location of the centroid. (b) The moments of inertia about the centroidal axes. (c) The direction of the principal axes.	$\begin{bmatrix}1\\2\\3\end{bmatrix}\begin{bmatrix}24\\12\\24\end{bmatrix}$				
(d) The principal moments of inertia.	12 36 cm 12				

Solution:

Element	A	x	у	Ax	A y	x-xb	y-yb	Ix	$A(y-yb)^2$	I_y	$A(x-xb)^2$	I _{xoye}	I _{xv}
1	432.00	6.00	42.00	2592.00	18144.00	-24.00	12.00	46656.00	62208.00	5184.00	248832.00	0.00	-124416.00
2	432.00	30.00	30.00	12960.00	12960.00	0.00	0.00	5184.00	0.00	46656.00	0.00	0.00	0.00
3	432.00	54.00	18.00	23328.00	7776.00	24.00	-12.00	46656.00	62208.00	5184.00	248832.00	0.00	-124416.00
	1296.00			38880.00	38880.00			98496.00	124416.00	57024.00	497664.00		-248832.00

			ii (2 meta) -	-1
xb= 30.00 cm	$I_x = 222912.00 \ cm^4$	$I_u = 687858.84 \ cm^4$	2 Theta =	-56.31
$yb = 30.00 \ cm$	$I_v = 554688.00 \ cm^4$	$I_{v} = 89741.16 \ cm^{4}$	Theta =	-28.15

Question (2): (15 Marks)

A bar of variable cross-section is subjected ⁻ to axial loads as shown.

- (a) Determine the maximum safe value of P_{Safe} .
- (b) Determine the deformation of the **Bronze**
- part only due to P_{Safe} calculated in (a)

Given Data:

Allowable stress for bronze = 100 MPaAllowable stress for aluminum = 90 MPaE = 2.58 GPa

Solution:

(a)

For bronze:

$$\sigma_{bronze} = \frac{P_{bronze}}{A_{bronze}} \le 100 \, N \,/\, mm^2 \, \rightarrow \, \frac{P}{20 \times 5} \le 100 \qquad \qquad \therefore P \le 10000 \, N \, \dots(1)$$

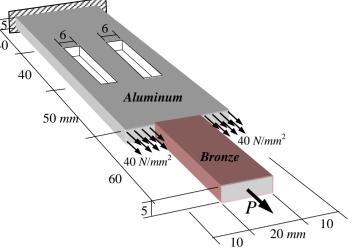
For aluminum (solid part):

 $\sigma_{alum} = \frac{P_{alum}}{A_{alum}} \le 90 \, N/mm^2 \quad \Rightarrow \quad \frac{P + 2(10 \times 5) \times 40}{40 \times 5} \le 90 \qquad \qquad \therefore \quad P \le 14000 \, N \quad \dots (2)$

For aluminum (hollow part):

$$\sigma_{alum} = \frac{P_{alum}}{A_{alum}} \le 90 \, N/mm^2 \quad \Rightarrow \quad \frac{P + 2(10 \times 5) \times 40}{(40 - 2 \times 6) \times 5} \le 90 \qquad \qquad \therefore \quad P \le 8600 \, N \quad \dots (3)$$

Form (1), (2) and (3), the maximum safe value of axial load P = 8600 N = 8.6 kN


(b) $E = 2.58 \ GPa = 2.58 \times 10^3 \ MPa = 2.58 \times 10^3 \ N/mm^2$

$$\Delta = \frac{P_{safe}L}{EA} = \frac{8600 \times 60}{2580 \times (20 \times 5)} = 2 mm$$

The deformation of the **Bronze** part only due to $P_{Safe} = 2 \text{ mm}$

 $P_{Safe} = 8.6 \ kN$

 $\Delta = 2 mm$

