

Ministry of Higher Education Giza Higher Institute for Eng. & Tech.

Civil Engineering Department

Course Name: Theory of Structures (2)

Course Code : CIV 202

Academic Year : 2016-2017

Semester : **Second**

Level: 2nd

Time: 1½ Hours
Date: 25/3/2017

Examiner: Dr. M. Abdel-Kader

Answer of Mid-Term Exam

- The Exam consists of **2** questions in **1** page.

Question (1): (10 Marks)

For the shown cross-section, determine the following:

- (a) The location of the centroid.
- (b) The moments of inertia about the centroidal axes.
- (c) The direction of the principal axes.
- (d) The principal moments of inertia.
- (e) The polar moment of inertia.
- (f) The radius of gyration about the centroidal *x*-axis.

Answer:

Element	b	h	A	x	у	Ax	Ay	x-xb	y-yb	I_{x}	$A(y-yb)^2$	I_y	$A(x-xb)^2$	Ixcyc	I_{xy}
1	2	3	6.00	1.00	3.50	6.00	21.00	-9.62	-0.72	4.50	3.09	2.00	554.82	0.00	41.38
2	16	2	32.00	8.00	1.00	256.00	32.00	-2.62	-3.22	10.67	331.21	682.67	219.02	0.00	269.33
3	2	10	20.00	15.00	7.00	300.00	140.00	4.38	2.78	166.67	154.88	6.67	384.36	0.00	243.99
4	4	4	8.00	17.33	10.67	138.67	85.33	6.72	6.45	7.11	332.77	7.11	360.96	3.56	350.13
			66.00			700.67	278.33			188.94	821.94	698.44	1519.16		904.84

a)
$$xb = 10.62 \ cm$$
 b) $I_x = 1010.89 \ cm^4$ c) $tan (2 \text{ Theta} = 1.499658 \ d) $I_u = 2701.80 \ cm^4$ $yb = 4.22 \ cm$ $I_y = 2217.61 \ cm^4$ $2 \text{ Theta} = 56.30 \ I_v = 526.70 \ cm^4$ Theta = 28.15$

- e) The polar moment of inertia = $I_x + I_y = 3228.50 \text{ cm}^4$ f) Radius of gyration $i_x = \sqrt{I_x/A} = 3.91 \text{ cm}$
 - Radius of gyration $i_y = \sqrt{I_y/A} = 5.80 \text{ cm}$

Question (2): (10 Marks)

A bar of variable cross-section is subjected to axial loads as shown.

- (a) Determine the maximum safe value of P.
- (b) Determine the deformation of the **Bronze** part **only** due to **P** calculated in (a).

Given Data:

Allowable stress for bronze = 100 MPaAllowable stress for steel = 140 MPaAllowable stress for aluminum = 90 MPaE = 11.2 GPa

Answer:

(a)

For bronze:

$$\sigma_{bronze} = \frac{P_{bronze}}{A_{bronze}} \le 100 \ N / mm^2 \Rightarrow \frac{P}{150 \times 40} \le 100 \qquad \therefore P \le 600000 \ N \dots (1)$$

For steel:

$$\sigma_{alum} = \frac{P_{alum}}{A_{alum}} \le 140 \, N/mm^2 \quad \Rightarrow \quad \frac{P}{150 \times 40} \le 140 \qquad \qquad \therefore \quad P \le 840000 \, N \quad \dots (2)$$

For aluminum:

$$\sigma_{steel} = \frac{P_{steel}}{A_{steel}} \le 90 \, N/mm^2 \quad \Rightarrow \quad \frac{3P}{(300 - 160) \times 40} \le 90 \qquad \therefore \quad P \le 168000 \, N \quad ...(3)$$

Form (1), (2) and (3), the maximum safe value of axial load P = 168000 N = 168 kN

 $P_{Safe} = 168 \ kN$

(b)
$$E = 11.2 \text{ } GPa = 11.2 \times 10^3 \text{ } MPa = 11.2 \times 10^3 \text{ } N/mm^2$$

$$\Delta = \frac{PL}{EA} = \frac{168000 \times 400}{11.2 \times 10^3 \times (150 \times 40)} = 1 \ mm$$