
-206

Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech. Civil Engineering Department Course Name: Theory of Structures (2) Course Code : CIV 202

Academic Year : 2016-2017
Semester: Second
Level : $\mathbf{2}^{\text {nd }}$
Time: $\mathbf{1 1}^{1 / 2}$ Hours
Date: 25/3/2017
Examiner: Dr. M. Abdel-Kader

Answer of Mid-Term Exam

- The Exam consists of $\mathbf{2}$ questions in $\mathbf{1}$ page.

Question (1): (10 Marks)

For the shown cross-section, determine the following:
(a) The location of the centroid.
(b) The moments of inertia about the centroidal axes.
(c) The direction of the principal axes.
(d) The principal moments of inertia.
(e) The polar moment of inertia.
(f) The radius of gyration about the centroidal x-axis.

Answer:

Element	b	h	A	x	y	$A x$	A y	$x-x b$	$y-y b$	I_{x}	$A(y-y b)^{2}$	I_{y}	$A(x-x b)^{2}$	Ixcyc	$I_{x y}$
1	2	3	6.00	1.00	3.50	6.00	21.00	-9.62	-0.72	4.50	3.09	2.00	554.82	0.00	41.38
2	16	2	32.00	8.00	1.00	256.00	32.00	-2.62	-3.22	10.67	331.21	682.67	219.02	0.00	269.33
3	2	10	20.00	15.00	7.00	300.00	140.00	4.38	2.78	166.67	154.88	6.67	384.36	0.00	243.99
4	4	4	8.00	17.33	10.67	138.67	85.33	6.72	6.45	7.11	332.77	7.11	360.96	3.56	350.13
			66.00			700.67	278.33			188.94	821.94	698.44	1519.16		904.84

Question (2): (10 Marks)

A bar of variable cross-section is subjected to axial loads as shown.
(a) Determine the maximum safe value of \boldsymbol{P}.
(b) Determine the deformation of the Bronze part only due to \boldsymbol{P} calculated in (a).

Given Data:

Allowable stress for bronze $=100 \mathrm{MPa}$
Allowable stress for steel $=140 \mathrm{MPa}$
Allowable stress for aluminum $=90 \mathrm{MPa}$
$E=11.2 \mathrm{GPa}$

Answer:

(a)

For bronze:

$$
\sigma_{\text {bronze }}=\frac{P_{\text {bronze }}}{A_{\text {bronze }}} \leq 100 \mathrm{~N} / \mathrm{mm}^{2} \rightarrow \frac{P}{150 \times 40} \leq 100 \quad \therefore P \leq 600000 \mathrm{~N}
$$

For steel:

$$
\begin{equation*}
\sigma_{\text {alum }}=\frac{P_{\text {alum }}}{A_{\text {alum }}} \leq 140 \mathrm{~N} / \mathrm{mm}^{2} \rightarrow \frac{P}{150 \times 40} \leq 140 \quad \therefore P \leq 840000 \mathrm{~N} \tag{2}
\end{equation*}
$$

For aluminum:

$$
\begin{equation*}
\sigma_{\text {steel }}=\frac{P_{\text {steel }}}{A_{\text {steel }}} \leq 90 \mathrm{~N} / \mathrm{mm}^{2} \rightarrow \frac{3 P}{(300-160) \times 40} \leq 90 \quad \therefore P \leq 168000 \mathrm{~N} \tag{3}
\end{equation*}
$$

Form (1), (2) and (3), the maximum safe value of axial load $\boldsymbol{P}=168000 \mathrm{~N}=168 \mathrm{kN}$
(b) $E=11.2 \mathrm{GPa}=11.2 \times 10^{3} \mathrm{MPa}=11.2 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$

$$
\Delta=\frac{P L}{E A}=\frac{168000 \times 400}{11.2 \times 10^{3} \times(150 \times 40)}=1 \mathrm{~mm}
$$

