

Ministry of Higher Education

Giza Higher Institute of Engineering & Technology

Civil Engineering Department

Course Name: Theory of Structures (1)A

Course Code: CIV 111 Date: 11/11/2017

40 kN.m

3 m

Academic Year: 2017/2018 Semester: **First** 1st Civil Level: Time: 11/4 Hours Examiner: Dr. M. Abdel-Kader

8 kN/m

3 m

 $T_{AD} = 5 \text{ kN Tension}$

Final Reactions

Answer of Mid-Term Exam

4 kN/m

 $\prod \prod E$

4 m

Total Marks: 30 No. of Questions:3 (Attempt all questions)

4 kN

50 kN

4

Question (1): (12 Marks)

For the shown structure, determine the reactions at the supports A, Band C and the force in the link member AD.

Note: In your answer sheet, draw the final reactions (direction and magnitude) on the structure.

Part HD: $+ \circlearrowleft \sum M_D = 0 \Rightarrow$ $B_{\rm w} = 50 \; kN$

Entire structure: $+\uparrow \sum F_v = 0 \rightarrow$ $A_v = 3 \text{ kN}$

Part AD: $+ \mathcal{O} \sum M_D = 0 \Rightarrow A_x = 4 \text{ kN}$

Entire structure: $+ \rightarrow \sum F_x = 0 \rightarrow C_x = 4 \text{ kN}$

Force in link member = $\sqrt{4^2 + 3^2} = 5 \, kN \, (Tension)$

Ouestion (2): (12 Marks)

b) Maximum positive moment is at (zero shear) a distance of 3.5 m from support b.

Its magnitude of 9 kN.m

Question (3): (6 Marks)

(a) Stable + Det.

(b) Stable + Ind. 1st Degree

(c) Stable + Ind. 2nd Degree