Academic Year : 2015–2016

Semester : Second

Question (1): (10 Marks)

Using the three-moment equation, draw the shear force and bending moment diagrams for the shown beam.

- Applying three-moment equation at A (for the spans A_oA and AB):

$$2M_{A}(4) + M_{B}(4) = -6\left(\frac{(2/3 \times 4 \times 120)2}{4}\right) = -960$$

$$2M_{A} + M_{B} = -240 \qquad (1)$$

- Applying three-moment equation at *B* (for the spans *BA* and *BC*):

$$M_A(4) + 2M_B(4+4) + M_C(4) = -6\left(\frac{(2/3 \times 4 \times 120)2}{4} + \frac{(2/3 \times 4 \times 120)2}{4}\right) = -1920$$

But (from symmetry) $M_c = M_A$

$$M_A + 2M_B = -240$$
 (2)
-4 $M_A - 2M_B = +480$ (1)

- From (1) and (2),

$$M_A = -80 \text{ kN.m}$$
 and $M_B = -80 \text{ kN.m}$

The bending moment and shear force diagrams are shown below.

