Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Civil Engineering Department
Course Name: Theory of Structures (4)
Course Code : CIV 302

Academic Year : 2014-2015
Semester: Second
Level : $3^{\text {rd }}$
Time: 1½ Hours
Date : 29/3/2015
Examiner: Dr. M. Abdel-Kader

Solution of Mid-Term Exam

Question (1): (10 Marks)

Using the three-moments equation, draw the shear force and bending moment diagrams for the shown beam. The relative moments of inertia are given between brackets.

Solution

- The simply supported moment diagram (M_{O}) on spans $B C$ and $C D$ is shown below.
- The moment at $B, M_{B}=-90 \mathrm{kN} . \mathrm{m}$ and the moment at $D, M_{D}=-60 \mathrm{kN} . \mathrm{m}$
- Applying three-moments equation for spans $B C$ and $C D$:

$$
\begin{aligned}
M_{B}\left(\frac{6}{2 I}\right)+2 M_{C}\left(\frac{6}{2 I}+\frac{4}{I}\right)+M_{D}\left(\frac{4}{I}\right) & =-6\left(\frac{270}{2 I}+\frac{160}{I}\right) \\
(-90)(3)+\quad 14 M_{C} \quad+(-60)(4) & =-6(295) \\
-510+14 M_{C}=-1770 \quad & \rightarrow \quad 14 M_{C}=-1260 \quad \rightarrow \quad M_{C}=-90 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

The bending moment and shear force diagram are shown below.

Shear Force (kN)

Question (2): (10 Marks)
For the shown frame with variable moment of inertia, using the Consistent Deformations (Virtual Work) method, draw the bending moment diagram due to the given loads.
E is constant. The relative moments of inertia are given between brackets.

Solution of Question (2)

$$
\begin{aligned}
\delta_{10} & =\int \frac{M_{0} M_{1}}{E I} d l \\
& =\frac{1}{E I}\left[\left(-\frac{480+840}{2} \times 6\right)(6)+\left(\frac{2}{3} \times 6 \times 90\right)(6)\right. \\
& +\frac{1}{2 E I}\left[-\left(\frac{1}{2} \times 3 \times 480\right)\left(3+\frac{3}{3} \times 3\right)\right] \\
& =\frac{-2376+2160}{E I}+\frac{-3600}{2 \epsilon I} \\
& =\frac{-23400}{E I} \\
\delta_{11} & =\int \frac{M_{1} M_{1}}{E I} d l=\frac{1}{E I}[(6 \times 6)(6)]+\frac{1}{2 E I}\left[\left(\frac{1}{2} \times 6 \times 6\right)\left(\frac{3}{3} \times 6\right)\right] \\
& =\frac{216}{E I}+\frac{72}{2 E I}=\frac{252}{E I}
\end{aligned}
$$

$$
\delta_{10}+x_{1} \delta_{11}=0 \Rightarrow x_{1}=-\frac{\delta_{10}}{\delta_{11}}=-\frac{-23400}{252}=92.857
$$

