Ministry of Higher Education Giza Higher Institute for Eng. \& Tech. Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301
Academic Year : 2016-2017
Semester : First
Level : $\mathbf{3}^{\text {rd }}$
Time : $\mathbf{1 1}^{1 ⁄ 2}$ Hours
Date: 20/11/2016
Examiner: Dr. M. Abdel-Kader

Answer of Mid-Term Exam

Question (1): (10 Marks)

Using the double integration method, determine the deflections at \boldsymbol{E} and \boldsymbol{F} for the beam loaded as shown, and sketch the elastic curve of the beam. $E I=100000 \mathrm{~N} . \mathrm{m}^{2}$

Solution:
Reactions:

$$
A_{y}(6)-1800-200 \times 4(0)=0
$$

$$
\begin{aligned}
& \rightarrow A_{y}=300 \mathrm{~N} \\
& D_{y}+300-200 \times 4=0 \\
& \rightarrow D_{y}=500 \mathrm{~N} \\
& \mathrm{M}=300 x_{\mid}\left|-1800(x-2)^{0}\right|-200(x-4)^{2} / 2|+500(x-6)| \\
& =300 x^{1}\left|-1800(x-2)^{{ }^{n}}\right|-100(x-4)^{2}|+500(x-6)|^{\text {II }} \mid \\
& \text { EI } y^{\prime \prime}=300 x\left|-1800(x-2)^{0}{ }^{0}\right|-100(x-4)^{2}{ }^{\text {III }}|+500(x-6)|_{\text {II }} \\
& \text { EI } y^{\prime}=150 x^{2}|-1800(x-2)|-100(x-4)^{3} / 3\left|+250(x-6)^{2}\right|+C_{1} \\
& \text { EI } y=50 x^{3}\left|-900(x-2)^{2}\right|-25(x-4)^{4} / 3\left|{ }_{\mathrm{II}}\right|+250(x-6)^{3} / 3 \mid+C_{1} x+C_{2}
\end{aligned}
$$

Boundary Conditions:
At $x=0, \quad y=0 \rightarrow C_{2}=0$
At $x=6 m, y=0 \rightarrow 0=50\left(6^{3}\right)-900\left(4^{2}\right)-25(2)^{4} / 3+6 C_{1} \rightarrow C_{1}=5600 / 9 \mathrm{~N} \cdot \mathrm{~m}^{3}$
So, the general equation of the deflection y at any distance x is,

$$
E I y=50 x^{3}-900(x-2)^{2}-25(x-4)^{4} / 3+250(x-6)^{3} / 3+5600 x / 9
$$

The deflection at $E\left(\delta_{F}\right)$, at $\boldsymbol{x}=\mathbf{8} \boldsymbol{m}$ (in the last region)

EI $\delta_{E}=50(8)^{3}\left|-900(8-2)^{2}\right|-25(8-4)^{4} / 3\left|+250(8-6)^{3} / 3\right|+5600(8) / 9$
EI $\delta_{E}=50(8)^{3}-900(6)^{2}-25(4)^{4} / 3 \quad+250(2)^{3} / 3 \quad+5600(8) / 9=-29600 / 9$
$\delta_{E}=-29600 /(9 \times 100000)=-0.0328889 \mathrm{~m}$
The deflection at $\boldsymbol{F}\left(\boldsymbol{\delta}_{\boldsymbol{F}}\right)$, at $\boldsymbol{x}=\mathbf{3} \boldsymbol{m}$ (in region II)

$$
\begin{aligned}
& E I \delta_{F}=\left.50(3)^{3}\right|_{\mathrm{V}}-900(3-2)^{2}\left|-25(3-4)^{4} / 3\right| \\
& E I \delta_{\mathrm{II}}\left|+250(3-6)^{3} / 3\right|+5600(3) / 9 \\
& \delta_{F}=50(3)^{3}-900(1)^{2}+5600(3) / 9=6950 / 3 \\
& \delta_{F}=6950 /(3 \times 100000)=0.02317 \mathrm{~m} \delta_{F}=23.2 \mathrm{~mm} \uparrow
\end{aligned}
$$

Elastic curve

Question (2): (10 Marks)

For the shown beam, using the Moment-area method, determine:
(a) The slope at A
(b) The slope at B
(c) The deflection at B
and sketch the elastic curve of the beam.

$E=200 \mathrm{GPa}$
$I=290 \times 10^{6} \mathrm{~mm}^{4}$

Solution:

$$
E=200 \mathrm{GPa}=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}
$$

$I=290 \times 10^{6} \mathrm{~mm}^{4}=290 \times 10^{-6} \mathrm{~m}^{4}$
$E I=58000 \mathrm{kN} \cdot \mathrm{m}^{2}$
The bending moment diagram may be drawn as shown.

(a) The slope at A
$\theta_{A}=\frac{t_{C / A}}{8}$
Apply the second moment-area theorem, then

$$
\begin{aligned}
t_{C / A} & =\frac{1}{E I}\left[\text { Area }_{A C} \cdot \bar{X}_{C}\right] \\
& =\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 300\right)(6)+\left(\frac{1}{2} \times 5 \times 300\right)\left(\frac{10}{3}\right)+\left(\frac{2}{3} \times 5 \times 125\right)(2.5)\right] \\
& =\frac{18725}{3 E I}=\frac{18725}{3 \times 58000}=749 / 6960=0.1076 \mathrm{~m} \\
\therefore \theta_{A} & =\frac{t_{C / A}}{8}=\frac{0.1076}{8}=0.01345 \mathrm{rad}==0.77^{\circ}
\end{aligned}
$$

$$
\theta_{A}=0.77^{\circ} \mathrm{U}
$$

(b) The slope at B

Since the slope at $A\left(\theta_{A}\right)$ is known $=-0.01345$, the change in slope between the tangents of the elastic curve at points B and $A\left(\theta_{B A}\right)$ is

$$
\theta_{B A}=\theta_{B}-\theta_{A}=\theta_{B}+0.01345
$$

Apply the first moment-area theorem, then

$$
\begin{aligned}
\theta_{B A} & =\theta_{B}+0.01345=\frac{1}{E I}[\text { Area of M }- \text { diagram between the points } A \text { and } B] \\
& =\frac{1}{E I}\left[\text { Area }_{A C}\right]=\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 300\right)\right]=\frac{450}{E I}=\frac{450}{58000}=0.00776 \\
\theta_{B}+0.01345=0.00776 & \rightarrow \quad \theta_{B}=-0.00569 \mathrm{rad}=-0.326^{\circ} \quad \theta_{B}=0.33^{\circ} \mathrm{U}
\end{aligned}
$$

(c) The deflection at B

The deflection at $B=\delta_{B}=B B^{\prime \prime}-B^{\prime} B=(3 / 8) t_{C / A}-t_{B / A}$
Applying the second moment-area theorem, then

$$
t_{B / A}=\frac{1}{E I}[\text { First moment of area of } \mathrm{M}-\text { diagram between } A \text { and } B \text { about } B]
$$

$$
=\frac{1}{E I}\left[\text { Area }_{A B} \cdot \bar{X}_{B}\right]=\frac{1}{E I}\left[\left(\frac{1}{2} \times 3 \times 300\right)(1)\right]=\frac{450}{E I}=\frac{450}{58000}=0.00776 \mathrm{~m}
$$

$\therefore \delta_{B}=B B^{\prime \prime}-B^{\prime} B=(3 / 8) t_{C / A}-t_{B / A}=(3 / 8)(0.1076)-0.00776=0.03259 \mathrm{~m} \quad \delta_{B}=32.6 \mathrm{~mm} \downarrow$

Elastic curve

