

Ministry of Higher Education Giza Higher Institute for Eng. & Tech. Civil Engineering Department Course Name: **Theory of Structures (2)** Course Code : **CIV 202** Academic Year : 2015–2016 Semester : Second Level : 2nd Time : 3 Hours Date : 28 / 5 / 2016 Examiner: Dr. M. Abdel-Kader

Second Semester Final Exam

- Attempt all questions.
- The Exam consists of 5 questions in 2 pages.
- Maximum grade is 60 Marks.

Question (1): (12 Marks)

For the shown cross-section, determine the following:

- (a) The location of the centroid.
- (b) The moments of inertia about the centroidal axes $(I_{x_c} \& I_{y_c})$.

<u>Note:</u> Divide the cross-section to 4 elements as shown on the figure.

Question (2): (12 Marks)

A column of variable circular cross-section is subjected to axial loads as shown.

Check if the column is safe or not.

Given Data:

Allowable compressive stress for concrete = 80 MPaAllowable tensile stress for concrete = 10 MPaAllowable compressive stress for steel = 140 MPaAllowable tensile stress for steel = 140 MPa

Question (3): (12 Marks)

At the base section $(120 \ cm \times 60 \ cm)$ of the shown column, draw the normal stress distribution and calculate the maximum normal stresses. Neglect the column weight.

<u>Please turn over</u>

Ministry of Higher Education Giza Higher Institute for Eng. & Tech. Civil Engineering Department Course Name: **Theory of Structures (2)** Course Code : **CIV 202** Academic Year : 2015-2016Semester : Second Level : 2^{nd} Time : 3 Hours Date : 28 / 5 / 2016Examiner: Dr. M. Abdel-Kader

Question (4): (12 Marks)

For the shown column of variable circular cross-section,

- (a) Draw the twisting moment diagram.
- (b) Determine the maximum shear stress in each part (*AB* and *BC*).
- (c) Determine the angle of twist ϕ of section A with respect to the fixed support at C. $G = 8000 \ kN/cm^2$

$$\tau = \frac{Tr}{J}$$
 and $\phi = \frac{TL}{JG}$

Question (5): (12 Marks)

For the shown beam, calculate and draw:

- (a) The **normal** stress distribution over the cross-section at *a*.
- (b) The **shear** stress distribution over the cross-section at *a*.

With my best wishes Dr. M. Abdel-Kader