Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301

Academic Year : 2014-2015
Semester : First Level : $\mathbf{3}^{\text {rd }}$
Time: $\mathbf{3}$ Hours
Date: 10/1/2015
Examiner: Dr. M. Abdel-Kader

Solution of First Semester Final Exam

- Attempt all questions.
- The Exam consists of $\mathbf{5}$ questions in 1 page.
- Maximum grade is $\mathbf{6 0}$ Marks

Question (1): (12 Marks)

For the shown beam, using the double integration method, determine:
(a) the deflections at C and E,
(b) determine the slope at D,
and sketch the elastic curve of the beam.
$E I=10 \times 10^{6} \mathrm{~N} . \mathrm{m}^{2}$
Reactions:

$$
A_{y}(6)+36 \times 2-24 \times 3(3.5)=0
$$

$$
\rightarrow A_{y}=30 \mathrm{kN}
$$

$$
D_{y}+30-24 \times 3-36=0
$$

$M(x)=30 x-24(x-1)^{2} / 2+24(x-4)^{2} / 2+78(x-6)$
$E I y^{\prime \prime}=30 x-12(x-1)^{2}+12(x-4)^{2}+78(x-6)$
EIy $y^{\prime}=15 x^{2}-4(x-1)^{3}+4(x-4)^{3}+39(x-6)^{2}+\mathrm{C}_{1}$
EIy $=5 x^{3}-(x-1)^{4}+(x-4)^{4}+13(x-6)^{3}+\mathrm{C}_{1} x+\mathrm{C}_{2}$
Boundary Conditions:
At $x=0, \quad y=0 \rightarrow \underline{C}_{2}=\mathbf{0}$
At $x=6 m, y=0 \rightarrow 0=5(6)^{3}-(5)^{4}+(2)^{4}+6 C_{1}+\rightarrow \underline{C}_{\mathbf{1}}=\mathbf{- 7 8 . 5}$
So, the general equation of the deflection y at any distance x is, EIy $=5 x^{3}-(x-1)^{4}+(x-4)^{4}+13(x-6)^{3}-78.5 x$
(a) The deflection at $C(x=4 \mathrm{~m})$

$$
\begin{aligned}
E I y_{C} & =5(4)^{3}-(3)^{4}-78.5(4)=-75 \\
y_{C} & =-75 / 10000=0.0075 \mathrm{~m}=-7.5 \mathrm{~mm}
\end{aligned}
$$

$y_{C}=7.5 \mathrm{~mm}$
The deflection at $E(x=8 \mathrm{~m})$

$$
\begin{aligned}
E I y_{E} & =5(8)^{3}-(7)^{4}+(4)^{4}+13(2)^{3}-78.5(8)=-109 \\
y_{E} & =-109 / 10000=0.0109 m=-10.9 \mathrm{~mm}
\end{aligned}
$$

$$
y_{E}=10.9 \mathrm{~mm}
$$

(b) The slop at $D(x=6 m)$

$$
\begin{aligned}
E I y_{D}^{\prime} & =15(6)^{2}-4(5)^{3}+4(2)^{3}-78.5=-6.5 \\
y_{D}^{\prime} & =-6.5 / 10000=-0.00065=-0.03724^{\mathrm{o}}
\end{aligned}
$$

$$
y_{D}^{\prime}=-0.037^{\circ}
$$

Question (2): (12 Marks)

For the shown beam, using the moment-area method, determine:
(a) the slope at \boldsymbol{A},
(b) the deflection at \boldsymbol{C},
and sketch the elastic curve of the beam.

$$
E I=20 \times 10^{6} \mathrm{~N} . \mathrm{m}^{2}
$$

(a) Since the slope at $\boldsymbol{C}\left(\theta_{C}\right)$ is equal to zero, the change in slope between the tangents of the elastic curve at points A and $B\left(\theta_{A C}\right)$ is equal to the slope at $\boldsymbol{A}\left(\theta_{A}\right)$,

$$
\theta_{A C}=\theta_{A}-\theta_{C}=\theta_{A}-0=\theta_{A}
$$

then

$$
\begin{aligned}
\theta_{A}=\frac{1}{E I}\left[\text { Area }_{A C}\right] & =\frac{1}{20000}\left[\frac{2}{3} \times 3 \times 90-\frac{1}{2} \times 3 \times 112.5\right]=\frac{11.25}{20000}=5.625 \times 10^{-4} \mathrm{rads} \\
& =0.0322 \text { degrees }
\end{aligned}
$$

(b) The deflection at $\boldsymbol{C}\left(\delta_{C}\right)$ is equal to the deviation of the point \boldsymbol{A} above the tangent to the elastic curve at \boldsymbol{C}, then

$$
\begin{aligned}
\delta_{C}=t_{A / C} & =\frac{1}{E I}\left[\text { Area }_{A C} \cdot \bar{X}_{A}\right] \\
& =\frac{1}{20000}\left[\left(\frac{2}{3} \times 3 \times 90\right)\left(\frac{5}{8} \times 3\right)-\left(\frac{1}{2} \times 3 \times 112.5\right)\left(\frac{2}{3} \times 3\right)\right]=0 \quad \therefore \quad \delta_{C}=0
\end{aligned}
$$

OR

(a) $\theta_{A}=\frac{1}{E I}\left[\right.$ Area $\left._{A C}\right]$

$$
\begin{aligned}
& =\frac{1}{20000}\left[\frac{2}{3} \times 3 \times 22.5-\frac{1}{2} \times 3 \times 22.5\right]=\frac{11.25}{20000}=5.625 \times 10^{-4} \mathrm{rads} \\
& =0.0322 \text { degrees } \\
&
\end{aligned}
$$

(b) $\quad \delta_{C}=t_{A / C}=\frac{1}{20000}\left[\left(\frac{2}{3} \times 3 \times 22.5\right)\left(\frac{1}{2} \times 3\right)-\left(\frac{1}{2} \times 3 \times 22.5\right)\left(\frac{2}{3} \times 3\right)\right]=0 \quad \therefore \quad \delta_{C}=0$

Elastic Curve

Question (3): (12 Marks)

For the shown beam, using the conjugate beam method, determine:
(a) the slope at \boldsymbol{C}.
(b) the deflections at B and \boldsymbol{D}.
and sketch the elastic curve of the beam.
$E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$

Reaction:
$+\circlearrowright \sum M_{A}=0$
$A_{y}(6)-18 \times 3+54=0 \rightarrow A_{y}=0$
First construct the bending
 moment diagram of the real beam.

The resulting moment diagram is then loaded to the conjugate beam.
For the conjugate beam, determine the elastic reaction (R_{C}, M_{B} and M_{D}).

Moment

$W_{1}=\frac{1}{2} \times 3 \times 54=81 \quad k N . m^{2}$
$W_{2}=2 \times 54=108 \mathrm{kN} . \mathrm{m}^{2}$
$M_{C \text { for left part }}=0$
$R_{A}(6)-W_{l}(1)=0 \rightarrow R_{A}=13.5 \mathrm{kN} . \mathrm{m}^{2} \rightarrow R_{C}=81-13.5=67.5 \mathrm{kN} . \mathrm{m}^{2}$
$M_{B}=-R_{A}(3)=-13.5(3)=-40.5 k N . m^{3}$
$M_{D}=R_{C}(2)+W_{2}(1)=67.5(2)+108(1)=243 \mathrm{kN} \cdot \mathrm{m}^{3}$
(a) Slope at $\mathrm{C}=R_{C} / E I=67.5 / 20000=0.003375 \mathrm{rad}=0.1934^{\circ} \therefore \theta_{c}=0.19^{\circ}$
(b) Deflection at $B=M_{B} / E I=-40.5 / 20000=-0.002025 \mathrm{~m}=-2 \mathrm{~mm} \therefore \delta_{B}=2 \mathrm{~mm}$ 令

Deflection at $D=M_{D} / E I=243 / 20000=0.01215 \mathrm{~m}=12.15 \mathrm{~mm}$
$\therefore \delta_{D}=12.15 \mathrm{~mm}$

Question (4): ($\mathbf{1 2}$ Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal and vertical displacements at $c\left(\delta_{c h}\right.$ and $\left.\delta_{c v}\right)$.

For the frame, the relative moments of inertia are given between brackets and $E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$. For the truss, assume that all members have the same axial rigidity $E A=1000 \mathrm{kN}$.
$\delta_{c h}=\int \frac{M_{o} M_{1}}{E I} d L \quad=\frac{1}{E I}\left[(-4 \times 90)\left(-\frac{1}{2} \times 4\right)\right]=\frac{720}{E I}$
$\therefore \delta_{c h}=\frac{720}{20000}=0.036 \mathrm{~m}=36 \mathrm{~mm} \rightarrow$

$\delta_{c v}=\int \frac{M_{o} M_{2}}{E I} d L=\frac{1}{E I}[(-4 \times 90)(2)]+\frac{1}{2 E I}\left[\left(-\frac{1}{2} \times 2 \times 150\right)\left(-\frac{2}{3} \times 2\right)\right]=\frac{-620}{E I} \therefore \delta_{c v}=-\frac{620}{20000}=0.031 \mathrm{~m}=31 \mathrm{~mm}$ 个

Reactions and member forces due to:
(a) Applied load
(b) Horizontal unit load at c
(c) Vertical unit load at c

Calculation details for horizontal and vertical deflection of joint c

Member	L (m)	EA $(k N)$	N_{o} $(k N)$	N_{1} $(k N)$	N_{2} $(k N)$	$\mathrm{N}_{0} \mathrm{~N}_{1} \mathrm{~L} / \mathrm{EA}$	$\mathrm{N}_{0} \mathrm{~N}_{2} \mathrm{~L} / \mathrm{EA}$
$a b$	4	1000	10	1	0	0.04	0
$b c$	4	1000	10	1	-1	0.04	-0.04
$a c$	5.657	1000	-14.14	-1.414	0	0.113	0
\sum						$\delta_{c h}=0.193 \mathrm{~m}$ $(=19.3 \mathrm{~mm}$ left $)$	$\delta_{c v}=-0.04 \mathrm{~m}$ $(=4 \mathrm{~mm}$ Upwards $)$

Horizontal deflection of joint $\mathrm{c}=\delta_{c}^{h}=\sum \frac{N_{o} N_{1} L}{E A}=193 \mathrm{~mm} \leftarrow$
Vertical deflection of joint $\mathrm{c}=\delta_{c}^{v}=\sum \frac{N_{o} N_{2} L}{E A}=40 \mathrm{~mm} \uparrow$

Question (5): (12 Marks)

For the shown beam, draw the influence line for:
(a) the reactions A_{y}, B_{y} and C_{y}.
(b) the shear force at the section E and the bending moments at the sections E and G.

Also, determine the maximum moment at G caused by the shown moving truck.

Influence line for V_{E}

Influence line for M_{G}
$M_{G \max }=80(4.5)+80(7.5)+20(6.5)$
$=1090 \mathrm{kN} . \mathrm{m}$ t $\mathbf{~}$
$\therefore M_{G \max }=1090 \mathrm{kN.m} \mathbf{T t}$

I. L. for M_{G}

