Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Civil Engineering Department
Course Name: Theory of Structures (3)
Course Code : CIV 301

Academic Year : 2014-2015

First Semester Final Exam

- Attempt all questions.
- The Exam consists of $\mathbf{5}$ questions in $\mathbf{1}$ page.
- Maximum grade is $\mathbf{6 0}$ Marks

Question (1): (12 Marks)

For the shown beam, using the double integration method, determine:
(a) the deflections at C and E,
(b) determine the slope at D,
and sketch the elastic curve of the beam.

$$
E I=10 \times 10^{6} \mathrm{~N} . \mathrm{m}^{2}
$$

Question (2): (12 Marks)

For the shown beam, using the moment-area method, determine:
(a) the slope at \boldsymbol{A},
(b) the deflection at \boldsymbol{C},
and sketch the elastic curve of the beam.
$E I=20 \times 10^{6} \mathrm{~N} . \mathrm{m}^{2}$

Question (3): (12 Marks)

For the shown beam, using the conjugate beam method, determine:
(a) the slope at \boldsymbol{C}.
(b) the deflections at B and \boldsymbol{D}.
and sketch the elastic curve of the beam.

$$
E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}
$$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal and vertical displacements at $c\left(\delta_{c h}\right.$ and $\left.\delta_{c v}\right)$.

For the frame, the relative moments of inertia are given between brackets and $E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$. For the truss, assume that all members have the same axial rigidity $E A=1000 \mathrm{kN}$.

Question (5): (12 Marks)

For the shown beam, draw the influence line for:
(a) the reactions A_{y}, B_{y} and C_{y}.
(b) the shear force at the section E and the bending moments at the sections E and G.

Also, determine the maximum moment at G caused by the shown moving truck.

