F2R ENGNEGNG NGTIUTE

Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (1)B
Course Code : CIV 121
Date: 19/5/2019
Final Exam

Academic Year :
2018/2019
Semester :
Second
Level : $\quad \mathbf{1}^{\text {st }}$ Civil
Time : $\quad 3$ Hours
Examiners: Dr. M. Abdel-Kader

Total Marks: 90

Question (1): (30 Marks)

(a) For the shown cross-section, determine the following:

- The location of the centroid.
- The moments of inertia about the centroidal axes.
- The polar moment of inertia.
- The radii of gyration $\left(r_{x} \& r_{y}\right)$.

Note: Divide the cross-section to 4 elements as shown on the figure.

$$
\begin{array}{|l|lllll|l|}
1 & 0.5 & 1.5 & 0.5 & 1.5 m & 0.5 & 1 \\
\hline
\end{array}
$$

(b) A column of variable circular cross-section is subjected to axial loads as shown. Determine the safe range of \boldsymbol{P}.

Given Data:

For Steel: Allowable compressive and tensile stresses $=140 \mathrm{MPa}$
For Concrete: Allowable compressive stress $=80 \mathrm{MPa}$
Allowable tensile stress $=10 \mathrm{MPa}$

Question (2): (30 Marks)

(a) For the shown column, draw the normal stress distribution at the base section ($40 \mathrm{~cm} \times 60 \mathrm{~cm}$) and calculate the maximum normal stresses. Neglect the column weight.
(b) For the shown bolted butt joint, determine the safe diameter of bolts. The width of plates is 10 cm , and the thickness of plates is 12 mm . The allowable stresses are as follows:
Bolts: $\tau_{\text {all }}=1.1 \mathrm{ton} / \mathrm{cm}^{2}$,
Plates: $\sigma_{\text {tall }}=1.4$ ton $/ \mathrm{cm}^{2}$ and $\sigma_{\text {bearing all }}=1.6 \mathrm{ton} / \mathrm{cm}^{2}$

Question (3): (30 Marks)

(a) For the shown beam, calculate and draw the shear stress distribution over the cross-section at \boldsymbol{a}.

Cross-section of the beam
(b) A column of two tubes must resist torques as shown. The tubes have outside diameters of 10 cm and 15 cm and a thickness of 10 mm .

- Draw the twisting moment diagram.
- Determine the maximum shear stress $\tau_{\text {max }}$ in the two tubes.
- Determine the relative angle of twist ϕ between \boldsymbol{A} and \boldsymbol{C}, where $G=30 G P a$.

