Ministry of Higher Education
Giza Higher Institute for Eng. \& Tech.
Academic Year : 2015-2016

Civil Engineering Department
Course Name: Theory of Structures (3)
Time: $\mathbf{3}$ Hours
Course Code : CIV 301

First Semester Final Exam

- Attempt all questions.
- The Exam consists of $\mathbf{5}$ questions in $\mathbf{1}$ page.
- Maximum grade is $\mathbf{6 0}$ Marks

Question (1): (12 Marks)

For the shown beam, using the double integration method, determine:
(a) the deflections at $\boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{F}
(b) the slopes at \boldsymbol{C} and \boldsymbol{D}
and sketch the elastic curve of the beam.

$$
E I=0.2 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2}
$$

Question (2): (12 Marks)

For the shown cantilever of rectangular cross-section 250 mm wide by $\boldsymbol{h} \mathrm{mm}$ high, using the moment-area method, determine:
(a) the height \boldsymbol{h} if the maximum deflection is not to exceed 10 mm
(b) the deflection at \boldsymbol{C} (use the calculated \boldsymbol{h})
(c) the slope at \boldsymbol{A} (use the calculated \boldsymbol{h})
and sketch the elastic curve of the cantilever.
$E=9 \mathrm{GPa}$

Question (3): (12 Marks)

For the shown beam, using the conjugate beam method, determine:
(a) the slopes at \boldsymbol{A} and \boldsymbol{B}
(b) the deflection at \boldsymbol{B}
and sketch the elastic curve of the beam.

$$
E=200 G P a \quad I=290 \times 10^{6} \mathrm{~mm}^{4}
$$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the horizontal displacements at $\boldsymbol{E}\left(\delta_{E h}\right)$.
For the frame, $E I=50 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.
For the truss, assume that all members have the same axial rigidity $E A=10000 \mathrm{kN}$.

Question (5): (12 Marks)

For the shown beam, draw the influence lines for:
(a) the reactions A_{y}, B_{y}.

(b) the shear forces at the sections D and B_{r}
(c) the bending moments at the sections A and D.
Also, determine the maximum positive and negative moments at D caused by the shown moving truck.

