Ministry of Higher Education

Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)A
Course Code : CIV 211
Date : 29/12/2019

Answer of Final Exam

Question (1): (14 Marks)

For the shown beam, using the double integration method, determine:
(a) the deflections at $\boldsymbol{A}, \boldsymbol{C}$ and \boldsymbol{E}
(b) the slopes at \boldsymbol{A} and \boldsymbol{C}
and sketch the elastic curve of the beam.
$E I=5 \times 10^{4} \mathrm{kN} . \mathrm{m}^{2}$

Reactions:

$$
\begin{aligned}
& U M_{D}=-80+B_{y}(5)+40 \times 2=0 \quad \rightarrow B_{y}=0 \\
& \uparrow F_{y}=D_{y}-40=0 \quad \rightarrow D_{y}=40 \mathrm{kN} \uparrow
\end{aligned}
$$

$$
M=-80(x)^{0}+40(x-7)
$$

$E I y^{\prime \prime}=-80(x)^{0}+40(x-7)$

EIy ${ }^{\prime}=-80 x+20(x-7)^{2}+C_{1}$
EIy $=-40 x^{2}+20(x-7)^{3} / 3+C_{1} x+C_{2}$
Boundary Conditions:
$\begin{array}{lll}\text { At } x=2 m, & y=0 \rightarrow 0=-40(2)^{2}+C_{1}(2)+C_{2} & \rightarrow 2 C_{1}+C_{2}=160 \\ \text { At } x=7 m, & y=0 \rightarrow 0=-40(7)^{2}+20(0)^{3} / 3+C_{1}(7)+\boldsymbol{C}_{\mathbf{2}} & \rightarrow 7 C_{1}+C_{2}=1960 \\ & \rightarrow \underline{\boldsymbol{C}_{1}=360} \text { and } \underline{C_{2}}=\mathbf{- 5 6 0}\end{array}$
So, the general equation of the deflection y at any distance x is,
$E I y=-40 x^{2}+20(x-7)^{3} / 3+360 x-560$
(a) The deflection at $A(x=0)$

$$
\begin{aligned}
E I y_{A} & =-40(0)^{2}+20 \sqrt{3}+360(0)-560=-560 \\
y_{A} & =-560 / 50000=-0.0112 m=-11.2 \mathrm{~mm}
\end{aligned}
$$

The deflection at $C(x=4.5 \mathrm{~m})$

$$
\begin{aligned}
E I y_{C} & =-40(4.5)^{2}+20(4.5-1)^{3} / 3+360(4.5)-560=250 \\
y_{C} & =250 / 50000=0.005 \mathrm{~m}=5 \mathrm{~mm}
\end{aligned}
$$

The deflection at $E(x=9 m)$

$$
\begin{aligned}
E I y_{E} & =-40(9)^{2}+20(9-7)^{3} / 3+360(9)-560=-1520 / 3=-506.6667 \\
y_{E} & =-1520 / 3 / 50000=-0.010133 \mathrm{~m}=-10.13 \mathrm{~mm}
\end{aligned}
$$

(b) The slop at $A(x=0)$
$\left.E I y_{A}^{\prime}=-80 x+202\right)^{2}+C_{1}=0+0+360=360$

$$
y_{A}^{\prime}=360 / 50000=0.0072 \mathrm{rad} \quad \overline{1}=0.41^{\circ}
$$

The slop at $C(x=4.5 \mathrm{~m})$
$E I y_{C}^{\prime}=-80 x+20\left(x-x^{2}+C_{1}=-360+0+360=0\right.$
$y_{A}^{\prime}=0 / 50000=0$
$\frac{\text { The slop at } E(x=9 m)}{\text { Elyc } c=-80 x+20(x-7)^{2}+C_{1}=-720+80+360=0}$

Elastic curve

Question (2): (14 Marks)

For the shown beam, using the moment-area method, determine:
(a) the slope at \boldsymbol{A}
(b) the deflections at \boldsymbol{C} and \boldsymbol{B}
and sketch the elastic curve of the beam.

$$
E I=1 \times 10^{4} k N . m^{2}
$$

(a) From symmetry, the slope at $\boldsymbol{C}\left(\theta_{C}\right)$ is equal to zero, the change in slope between the tangents of the elastic curve at points A and C $\left(\theta_{A C}\right)$ is equal to the slope at $\boldsymbol{A}\left(\theta_{A}\right)$,

$$
\theta_{A C}=\theta_{C}-\theta_{A}=0-\theta_{A}=-\theta_{A}
$$

then

$$
\begin{aligned}
-\theta_{A} & =\frac{1}{E I}\left[\text { Area }_{A C}\right] \\
& =\frac{1}{10000}\left[\frac{2}{3} \times 4 \times 80-\frac{1}{2} \times 4 \times 80\right]=\frac{160}{3 \times 10000} \\
& =0.00533 \mathrm{rad} \\
& \therefore \theta_{A}=-0.00533 \mathrm{rad}
\end{aligned}
$$

(b) The deflection at $\boldsymbol{C}\left(\delta_{C}\right)=4 \theta_{A}-t_{C / A}$

$$
\begin{aligned}
& t_{C / A}=\frac{1}{E I}\left[\text { Area }_{A C} \cdot \bar{X}_{C}\right]=\frac{1}{10000}\left[\left(\frac{2}{3} \times 4 \times 80\right)(2)-\left(\frac{1}{2} \times 4 \times 80\right)\left(\frac{1}{3} \times 4\right)\right]=8 / 375=0.02133 \mathrm{~m} \\
& \delta_{C}=4 \theta_{A}-t_{C / A}=4(0.00533)-0.02133=
\end{aligned} \quad \therefore \delta_{C}=0
$$

OR

$$
\delta_{C}=t_{A / C}=\frac{1}{E I}\left[\text { Area }_{A C} \cdot \bar{X}_{A}\right]=\frac{1}{10000}\left[\left(\frac{2}{3} \times 4 \times 80\right)(2)-\left(\frac{1}{2} \times 4 \times 80\right)\left(\frac{2}{3} \times 4\right)\right]=0 \quad \therefore \delta_{C}=0
$$

The deflection at $\boldsymbol{B}\left(\delta_{B}\right)=2 \theta_{A}-t_{B / A}$

$$
\begin{gathered}
t_{B / A}=\frac{1}{E I}\left[\text { Area }_{A B} \cdot \bar{X}_{B}\right]=\frac{1}{10000}\left[\left(\frac{2}{3} \times 2 \times 80\right)\left(\frac{3}{8} \times 2\right)-\left(\frac{1}{2} \times 2 \times 40\right)\left(\frac{1}{3} \times 2\right)\right]=2 / 375=0.00533 \\
\delta_{B}=2 \theta_{A}-t_{B / A}=2(0.00533)-0.00533=0.00533 \mathrm{~m}=5.33 \mathrm{~mm} \downarrow \therefore \delta_{B}=5.33 \mathrm{~mm} \downarrow
\end{gathered}
$$

Elastic Curve

Question (3): (14 Marks)
For the shown beam, using the conjugate beam method, determine:
(a) the deflections at $\boldsymbol{A}, \boldsymbol{C}$ and \boldsymbol{E}
(b) the slopes at \boldsymbol{A} and \boldsymbol{C}
and sketch the elastic curve of the beam.

$$
E I=5 \times 10^{4} \mathrm{kN} \cdot \mathrm{~m}^{2}
$$

The bending moment diagram is as shown. The resulting moment diagram is then loaded to the conjugate beam.
For the conjugate beam, determine the elastic reaction (r_{A} and r_{B}).

To determine the elastic reaction at $B\left(R_{B}\right)$ take the moment about D for part $B D$:

$$
\begin{array}{r}
\rightarrow R_{B}=200 / 3 \uparrow \\
R_{D}=200 / 3 \downarrow
\end{array}
$$

Then
Deflection at $\boldsymbol{A}=M_{A} / E I=-293.33 / 50000$

$$
\delta_{A}=-293.33 / 50000=-0.005867 \mathrm{~m}
$$

$$
\therefore \delta_{A}=5.87 \mathrm{~mm} \uparrow
$$

Deflection at $C=M_{C} / E I$

$$
\begin{aligned}
& =[200 / 3(2.5)-100(5 / 3)] / 50000 \\
\delta_{C} & =0 \quad \therefore \delta_{C}=0
\end{aligned}
$$

Deflection at $\boldsymbol{E}=M_{E} / E I=240 / 50000$

$$
\overline{\delta_{E}}=240 / 50000=-0.0048 \mathrm{~m}
$$

$$
\therefore \delta_{E}=4.8 \mathrm{~mm} \uparrow
$$

Slope at $A=$ Shear at $A / E I=226.67 / 50000$

$$
=0.00453 \quad \theta_{A}=0.00453 \mathrm{rad}
$$

$R_{A}=226.67160$
\lcm{y}

Slope at $C=$ Shear at $C / E I=[200 / 3-100] / 50000$

$$
=[-33.33] / 50000=-0.00067
$$

$$
\theta_{C}=-0.00067 \mathrm{rad}
$$

Question (4): (12 Marks)

For the shown frame and truss, using the virtual work method, determine the vertical displacement at $d\left(\delta_{d v}\right)$.

For the frame, the relative moments of inertia are given between brackets and $E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$. For the truss, assume that all members have the same axial rigidity $E A=1000 \mathrm{kN}$.

$\delta_{d v}=\int \frac{M_{o} M_{2}}{E I} d L=\frac{1}{E I}[(-4 \times 90)(2)]+\frac{1}{E I}\left[\left(-\frac{1}{2} \times 2 \times 150\right)\left(-\frac{2}{3} \times 2\right)\right]=\frac{-520}{E I} \therefore \delta_{d v}=-\frac{520}{20000}=0.026 \mathrm{~m}=26 \mathrm{~mm} \uparrow$

Reactions and member forces due to:
(a) Applied load
(b) Horizontal unit load at d
(c) Vertical unit load at d

Calculation details for horizontal and vertical deflection of joint d

Member	$\begin{aligned} & \hline \text { EA } \\ & (k N) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ (m) \end{gathered}$	$\begin{gathered} \mathrm{N}_{\mathrm{o}} \\ (k N) \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \\ (k N) \end{gathered}$	$\mathrm{N}_{\mathrm{o}} \mathrm{N}_{2} \mathrm{~L} / \mathrm{EA}$
1(ac)	1000	4	0	0	0
$2(c d)$	1000	4	0	0	0
3(bd)	1000	4	5	-1	-0.02
4(ab)	1000	4	5	0	0
5(ad)	1000	$4 \sqrt{2}$	-5 2	0	0
Σ					$\begin{gathered} \delta_{d v}=-0.02 \mathrm{~m} \\ (=20 \mathrm{~mm} \text { Upwards }) \end{gathered}$

\square
Vertical deflection of joint $d=\delta_{d}^{v}=\sum \frac{N_{o} N_{2} L}{E A}=20 \mathrm{~mm} \uparrow$

Question (5): (12 Marks)

For the shown beam, draw the influence line for:
(a) the reactions A_{y}, B_{y} and C_{y}.
(b) the shear force at the section E and the bending moments at the sections E and G.

Also, determine the maximum moment at G caused by the shown moving truck.

Influence line for V_{E}

Influence line for M_{G}

$$
\begin{aligned}
M_{G \max } & =80(4.5)+80(7.5)+20(6.5) \\
& =1090 \mathrm{kN} . \mathrm{m} \mathbf{~ t ~} \\
\therefore & M_{G \max }=1090 \mathrm{kN} . \mathrm{m} \mathbf{~ t}
\end{aligned}
$$

I. L. for M_{G}

