Ministry of Higher Education
Giza Higher Institute of Engineering \& Technology
Civil Engineering Department
Course Name: Theory of Structures (2)A
Course Code : CIV 211
Date : 29/12/2019
Final Exam

Academic Year : 2019/2020
Semester : First
Level : 2 Civil
Time : 3 Hours
Examiner: Dr. M. Abdel-Kader

Question (1): (14 Marks)

For the shown beam, using the double integration method, determine:
(a) the deflections at $\boldsymbol{A}, \boldsymbol{C}$ and \boldsymbol{E}
(b) the slopes at \boldsymbol{A} and \boldsymbol{C}
and sketch the elastic curve of the beam.
$E I=5 \times 10^{4} \mathrm{kN} . \mathrm{m}^{2}$

Question (2): (14 Marks)

For the shown beam, using the moment-area method, determine:
(a) the slope at \boldsymbol{A}
(b) the deflections at \boldsymbol{B} and \boldsymbol{C}
and sketch the elastic curve of the beam.

$$
E I=1 \times 10^{4} \mathrm{kN} \cdot \mathrm{~m}^{2}
$$

Question (3): (14 Marks)

For the shown beam, using the conjugate beam method, determine:
(a) the deflections at $\boldsymbol{A}, \boldsymbol{C}$ and \boldsymbol{E}
(b) the slopes at \boldsymbol{A} and \boldsymbol{C}
and sketch the elastic curve of the beam.

$$
E I=5 \times 10^{4} \mathrm{kN} . \mathrm{m}^{2}
$$

Question (4): (14 Marks)

For the shown frame and truss, using the virtual work method, determine the vertical displacement at $d\left(\delta_{d v}\right)$.

For the frame, assume $E I=20 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$. For the truss, assume that all members have the same axial rigidity $E A=1000 \mathrm{kN}$.

Question (5): (14 Marks)

For the shown beam, draw the influence line for:
(a) the reactions A_{y}, B_{y} and C_{y}.
(b) the shear force at the section E and the bending moments at the sections E and G.

Also, determine the maximum moment at G caused by the shown moving truck.

