

Academic Year : 2014–2015 Semester : Second Level : 4th Time : 3 Hours Date : 31 / 5 / 2015 Examiner: Dr. M. Abdel-Kader

Second Semester Final Examination

- Attempt all questions.

- The Exam consists of 4 questions in 2 pages. - Maximum grade is <u>60 Marks</u>.

Question (1): (10 Marks)

(a) Choose the correct answer (Put a, b, c or d in front of the statement number in your answer sheet).			
	1.	In SAP, properties of material and load combin	ations are considered as
		a) Input data.	c) Results of the analysis.
		b) Output data.	d) Always not required in the analysis.
	2. The responsibility of the analytical model results lies on		ts lies on
		a) The computer used.	c) The company developed the software.
		b) The input data.	d) The structural designer who used the software.
	3.	One of the assumptions that the stiffness metho	d is based on to analyze plane frames is
	a) Members (beams and columns) are straight with variable properties between joints.		
	b) Members will behave in non-linear and plastic manner.		
	c) Axial forces in members are very much less than the respective Euler buckling loads.		
	d) Applied loads may act out of the structure plane.		
	4. The triangle load applied on the shown vertical wall is called:		wall is called:
		a) Earth pressure Load.	c) Earthquake Load.
		b) Hydrostatic Load.	d) Settlement Load.
	5. Stiffness is the property of an element which is defined as		
		a) Force per unit displacement.	c) Force per unit mass. p^{-n}
		b) Displacement per unit force.	d) Displacement per unit area.
	6.	The correct choice of modeling and analysis to	ols/methods depends on
		a) Importance of the structure.	c) Purpose of structural analysis.
		b) Required level of response accuracy.	d) All the above.
(b) I KUE or FALSE (Put \checkmark or \checkmark in front of the statement number in your answer sheet)			
	1. For plane frame element 1-2 (connecting joints 1 and 2), the $J_{F_{V_2}} \downarrow M_1 \searrow M_2$		
		positive sign of forces (forces and moments)	s as shown in F_{y_1}
	the figure.		
	2. The frame element is also called beam-column element. F_{x_1} F_{x_2}		
	3. For intermediate hinge, only the compatibility of the displacement is satisfied while the		
	compatibility is not satisfied for the rotation.		
	4. The approximation CAD means Computer-Alded Design and the appreviation "SAP" means		
	Structural Analysis Programs.		
	5. Dat eterment used in modering trusses has two nodes at its ends, every node has 5 degree of freedom (d o f) in the element axial direction		
	Le serves from a them are 6 d o from from node, which are 2 translations and 2 rotations		
	7. The default initial extract of SAD2000 is the deformed share of the structure.		
	7. The default limital output of SAF2000 is the deformed shape of the structure. SAF2000 always assumes that Z is the vertical axis, with $\sqrt{2}$ hoing upward		
	 SAF 2000 always assumes that Z is the vertical axis, with +Z being upward. Solf weight loading always acts downward in the Z direction. 		
	10. Structures that can be modeled with the frame element include: 3 D and planar frames 3 D and		
planar trusses Elet clabs Paft foundation			
	11. Sections are defined independently of the frame elements, and are assigned to the elements		
12 If the direction of the moment M3 is as shown in the figure M3			n in the figure M3
	the top face will be subject to a compression		
13 The order of the input data: Editing Supports & Assigning			Assigning Axis 3
	13	Frame Sections is not important	
		i rame sections is not important.	Bottom Face

14. Wind load is constant over the height of high rise buildings.

Question (2): (10 Marks)

The matrix equilibrium equation of the shown structure is:

$$\{F\} = [K] \{\Delta\} + \{F^{t}\}$$

Write

- The nodal forces vector $\{F\}$
- The nodal displacements vector $\{\Delta\}$
- The fixed end solution $\{F^{f}\}$

Question (3): (20 Marks)

For the shown loaded frame with variable moment of inertia, using the stiffness method and **neglecting axial deformation**,

- (a) determine the displacements at the nodes due to the given load.
- (b) draw the bending moment diagram.

$$\begin{array}{c|c} \begin{array}{c} \hline \textbf{Given Data:} \\ \hline \textbf{E} = 2.1 \times 10^7 \, kN/m^2 & I = 0.8 \times 10^{-3} \, m^4 & A = 0.02 \, m^2 \\ \hline \textbf{W} \text{ (global axis)} \\ \hline \textbf{Y} \text{ (global axis)} \\ \hline \textbf{Y} \text{ (global axis)} \\ \hline \textbf{Frame element} \\ \hline \textbf{K}_e \end{bmatrix} = \begin{bmatrix} \left(\frac{EA}{L}\lambda^2 + \frac{12EI}{L^3}\mu^2\right) & \left(\frac{EA}{L}\mu\lambda - \frac{12EI}{L^3}\mu\lambda\right) & -\frac{6EI}{L^2}\mu \\ \left(\frac{EA}{L}\mu\lambda - \frac{12EI}{L^3}\mu\lambda\right) & \left(\frac{EA}{L}\mu^2 + \frac{12EI}{L^3}\lambda^2\right) & \frac{6EI}{L^2}\lambda \\ -\frac{6EI}{L}\mu\lambda - \frac{12EI}{L^3}\mu\lambda \\ \left(\frac{EA}{L}\mu\lambda - \frac{12EI}{L^3}\mu\lambda\right) & \left(\frac{EA}{L}\mu^2 + \frac{12EI}{L^3}\lambda^2\right) & \frac{6EI}{L^2}\lambda \\ -\frac{6EI}{L}\mu\lambda - \frac{6EI}{L^2}\mu \\ \left(-\frac{EA}{L}\lambda^2 - \frac{12EI}{L^3}\mu\lambda\right) & \left(-\frac{EA}{L}\mu\lambda - \frac{12EI}{L^3}\mu\lambda\right)$$

40 kN

 $30 \ kN/m$

4 m

Question (4): (20 Marks)

For the shown truss, using the stiffness method:

- (a) Determine the displacements at the nodes due to the given load.
- (b) Determine the reactions at the supports.

Given Data:
$$E = 2.0 \times 10^7 \ kN/m^2$$
 $A = 2.0 \times 10^{-4} \ m^2$

15 kN

15 kN

12 kN/m

4 m

8 kN.m

2 m

14000 N

2

4 m

(2I)

40 kN

With my best wishes Dr. M. Abdel-Kader